No Arabic abstract
In early-type stars a fossil magnetic field may be generated during the star formation process or be the result of a stellar merger event. Surface magnetic fields are thought to be erased by (sub)surface convection layers, which typically leave behind weak disordered fields. However, if the fossil field is strong enough it can prevent the onset of (sub)surface convection and so be preserved onto the main sequence. We calculate the critical field strength at which this occurs, and find that it corresponds well with the lower limit amplitude of observed fields in strongly magnetised Ap/Bp stars ($approx$ 300 G). The critical field strength is predicted to increase slightly during the main sequence evolution, which could also explain the observed decline in the fraction of magnetic stars. This supports the conclusion that the bimodal distribution of observed magnetic fields in early-type stars reflects two different field origin stories: strongly magnetic fields are fossils fields inherited from star formation or a merger event, and weak fields are the product of on-going dynamo action.
The powerful radiative winds of hot stars with strong magnetic fields are magnetically confined into large, corotating magnetospheres, which exert important influences on stellar evolution via rotational spindown and mass-loss quenching. They are detectable via diagnostics across the electromagnetic spectrum. Since the fossil magnetic fields of early-type stars are stable over long timescales, and the ion source is internal and isotropic, hot star magnetospheres are also remarkably stable. This stability, the relative ease with which they can be studied at multiple wavelengths, and the growing population of such objects, makes them powerful laboratories for plasma astrophysics. The magnetospheres of the magnetic early B-type stars stand out for being detectable in every one of the available diagnostics. In this contribution I review the basic methods by which surface magnetic fields are constrained; the theoretical tools that have been developed in order to reveal the key physical processes governing hot star magnetospheres; and some important recent results and open-ended questions regarding the properties of surface magnetic fields and the behaviour of magnetospheric plasma.
Are the kG-strength magnetic fields observed in young stars a fossil field left over from their formation or are they generated by a dynamo? We use radiation non-ideal magnetohydrodynamics simulations of the gravitational collapse of a rotating, magnetized molecular cloud core over 17 orders of magnitude in density, past the first hydrostatic core to the formation of the second, stellar core, to examine the fossil field hypothesis. Whereas in previous work we found that magnetic fields in excess of 10 kG can be implanted in stars at birth, this assumed ideal magnetohydrodynamics (MHD), i.e. that the gas is coupled to the magnetic field. Here we present non-ideal MHD calculations which include Ohmic resistivity, ambipolar diffusion and the Hall effect. For realistic cosmic ray ionization rates, we find that magnetic field strengths of $lesssim$ kG are implanted in the stellar core at birth, ruling out a strong fossil field. While these results remain sensitive to resolution, they cautiously provide evidence against a fossil field origin for stellar magnetic fields, suggesting instead that magnetic fields in stars originate in a dynamo process.
Aims: Projected rotational velocities (vsini) have been estimated for 334 targets in the VLT-FLAMES Tarantula survey that do not manifest significant radial velocity variations and are not supergiants. They have spectral types from approximately O9.5 to B3. The estimates have been analysed to infer the underlying rotational velocity distribution, which is critical for understanding the evolution of massive stars. Methods: Projected rotational velocities were deduced from the Fourier transforms of spectral lines, with upper limits also being obtained from profile fitting. For the narrower lined stars, metal and non-diffuse helium lines were adopted, and for the broader lined stars, both non-diffuse and diffuse helium lines; the estimates obtained using the different sets of lines are in good agreement. The uncertainty in the mean estimates is typically 4% for most targets. The iterative deconvolution procedure of Lucy has been used to deduce the probability density distribution of the rotational velocities. Results: Projected rotational velocities range up to approximately 450 kms and show a bi-modal structure. This is also present in the inferred rotational velocity distribution with 25% of the sample having $0leq$ve$leq$100,kms and the high velocity component having ve$sim 250$,kms. There is no evidence from the spatial and radial velocity distributions of the two components that they represent either field and cluster populations or different episodes of star formation. Be-type stars have also been identified. Conclusions: The bi-modal rotational velocity distribution in our sample resembles that found for late-B and early-A type stars. While magnetic braking appears to be a possible mechanism for producing the low-velocity component, we can not rule out alternative explanations.
To investigate statistically whether magnetic fields in massive stars are ubiquitous or appear in stars with specific spectral classification, certain ages, or in a special environment, we acquired 41 new spectropolarimetric observations for 36 stars. Among the observed sample roughly half of the stars are probable members of clusters at different ages, whereas the remaining stars are field stars not known to belong to any cluster or association. Spectropolarimetric observations were obtained during three different nights using the low-resolution spectropolarimetric mode of FORS2 (FOcal Reducer low dispersion Spectrograph) mounted on the 8-m Antu telescope of the VLT. To assess the membership in open clusters and associations, we used astrometric catalogues with the best currently available kinematic and photometric data. A field at a significance level of 3sigma was detected in ten O-type stars. Importantly, the largest longitudinal magnetic fields were measured in two Of?p stars: <B_z>=-381+-122G for CPD-282561 and <B_z>=-297+-62G for HD148937, previously detected by us as magnetic. The obtained observations of HD148937 on three different nights indicate that the magnetic field is slightly variable. Our new measurements support our previous conclusion that large-scale organized magnetic fields with polar field strengths in excess of 1kG are not widespread among O-type stars. Among the stars with a detected magnetic field, only one star, HD156154, belongs to an open cluster at high membership probability. According to previous kinematic studies, four magnetic O-type stars in the sample are well-known candidate runaway stars.
Many young and intermediate age massive stellar clusters host bimodal distributions in the rotation rates of their stellar populations, with a dominant peak of rapidly rotating stars and a secondary peak of slow rotators. The origin of this bimodal rotational distribution is currently debated and two main theories have been put forward in the literature. The first is that all/most stars are born as rapid rotators and that interacting binaries brake a fraction of the stars, resulting in two populations. The second is that the rotational distribution is a reflection of the early evolution of pre-main sequence stars, in particular, whether they are able to retain or lose their protoplanetary discs during the first few Myr. Here, we test the binary channel by exploiting multi-epoch VLT/MUSE observations of NGC 1850, a 100Myr massive cluster in the LMC, to search for differences in the binary fractions of the slow and fast rotating populations. If binarity is the cause of the rotational bimodality, we would expect that the slowly rotating population should have a much larger binary fraction than the rapid rotators. However, in our data we detect similar fractions of binary stars in the slow and rapidly rotating populations (5.9+/-1.1% and 4.5+/-0.6%, respectively).Hence, we conclude that binarity is not a dominant mechanism in the formation of the observed bimodal rotational distributions.