No Arabic abstract
This work studies black-box adversarial attacks against deep neural networks (DNNs), where the attacker can only access the query feedback returned by the attacked DNN model, while other information such as model parameters or the training datasets are unknown. One promising approach to improve attack performance is utilizing the adversarial transferability between some white-box surrogate models and the target model (i.e., the attacked model). However, due to the possible differences on model architectures and training datasets between surrogate and target models, dubbed surrogate biases, the contribution of adversarial transferability to improving the attack performance may be weakened. To tackle this issue, we innovatively propose a black-box attack method by developing a novel mechanism of adversarial transferability, which is robust to the surrogate biases. The general idea is transferring partial parameters of the conditional adversarial distribution (CAD) of surrogate models, while learning the untransferred parameters based on queries to the target model, to keep the flexibility to adjust the CAD of the target model on any new benign sample. Extensive experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
The vulnerability of deep neural networks (DNNs) to adversarial examples is well documented. Under the strong white-box threat model, where attackers have full access to DNN internals, recent work has produced continual advancements in defenses, often followed by more powerful attacks that break them. Meanwhile, research on the more realistic black-box threat model has focused almost entirely on reducing the query-cost of attacks, making them increasingly practical for ML models already deployed today. This paper proposes and evaluates Blacklight, a new defense against black-box adversarial attacks. Blacklight targets a key property of black-box attacks: to compute adversarial examples, they produce sequences of highly similar images while trying to minimize the distance from some initial benign input. To detect an attack, Blacklight computes for each query image a compact set of one-way hash values that form a probabilistic fingerprint. Variants of an image produce nearly identical fingerprints, and fingerprint generation is robust against manipulation. We evaluate Blacklight on 5 state-of-the-art black-box attacks, across a variety of models and classification tasks. While the most efficient attacks take thousands or tens of thousands of queries to complete, Blacklight identifies them all, often after only a handful of queries. Blacklight is also robust against several powerful countermeasures, including an optimal black-box attack that approximates white-box attacks in efficiency. Finally, Blacklight significantly outperforms the only known alternative in both detection coverage of attack queries and resistance against persistent attackers.
With the growing popularity of Android devices, Android malware is seriously threatening the safety of users. Although such threats can be detected by deep learning as a service (DLaaS), deep neural networks as the weakest part of DLaaS are often deceived by the adversarial samples elaborated by attackers. In this paper, we propose a new semi-black-box attack framework called one-feature-each-iteration (OFEI) to craft Android adversarial samples. This framework modifies as few features as possible and requires less classifier information to fool the classifier. We conduct a controlled experiment to evaluate our OFEI framework by comparing it with the benchmark methods JSMF, GenAttack and pointwise attack. The experimental results show that our OFEI has a higher misclassification rate of 98.25%. Furthermore, OFEI can extend the traditional white-box attack methods in the image field, such as fast gradient sign method (FGSM) and DeepFool, to craft adversarial samples for Android. Finally, to enhance the security of DLaaS, we use two uncertainties of the Bayesian neural network to construct the combined uncertainty, which is used to detect adversarial samples and achieves a high detection rate of 99.28%.
Nowadays, digital facial content manipulation has become ubiquitous and realistic with the success of generative adversarial networks (GANs), making face recognition (FR) systems suffer from unprecedented security concerns. In this paper, we investigate and introduce a new type of adversarial attack to evade FR systems by manipulating facial content, called textbf{underline{a}dversarial underline{mor}phing underline{a}ttack} (a.k.a. Amora). In contrast to adversarial noise attack that perturbs pixel intensity values by adding human-imperceptible noise, our proposed adversarial morphing attack works at the semantic level that perturbs pixels spatially in a coherent manner. To tackle the black-box attack problem, we devise a simple yet effective joint dictionary learning pipeline to obtain a proprietary optical flow field for each attack. Our extensive evaluation on two popular FR systems demonstrates the effectiveness of our adversarial morphing attack at various levels of morphing intensity with smiling facial expression manipulations. Both open-set and closed-set experimental results indicate that a novel black-box adversarial attack based on local deformation is possible, and is vastly different from additive noise attacks. The findings of this work potentially pave a new research direction towards a more thorough understanding and investigation of image-based adversarial attacks and defenses.
Image classifiers based on deep neural networks suffer from harassment caused by adversarial examples. Two defects exist in black-box iterative attacks that generate adversarial examples by incrementally adjusting the noise-adding direction for each step. On the one hand, existing iterative attacks add noises monotonically along the direction of gradient ascent, resulting in a lack of diversity and adaptability of the generated iterative trajectories. On the other hand, it is trivial to perform adversarial attack by adding excessive noises, but currently there is no refinement mechanism to squeeze redundant noises. In this work, we propose Curls & Whey black-box attack to fix the above two defects. During Curls iteration, by combining gradient ascent and descent, we `curl up iterative trajectories to integrate more diversity and transferability into adversarial examples. Curls iteration also alleviates the diminishing marginal effect in existing iterative attacks. The Whey optimization further squeezes the `whey of noises by exploiting the robustness of adversarial perturbation. Extensive experiments on Imagenet and Tiny-Imagenet demonstrate that our approach achieves impressive decrease on noise magnitude in l2 norm. Curls & Whey attack also shows promising transferability against ensemble models as well as adversarially trained models. In addition, we extend our attack to the targeted misclassification, effectively reducing the difficulty of targeted attacks under black-box condition.
Machine-learning-as-a-service (MLaaS) has attracted millions of users to their outperforming sophisticated models. Although published as black-box APIs, the valuable models behind these services are still vulnerable to imitation attacks. Recently, a series of works have demonstrated that attackers manage to steal or extract the victim models. Nonetheless, none of the previous stolen models can outperform the original black-box APIs. In this work, we take the first step of showing that attackers could potentially surpass victims via unsupervised domain adaptation and multi-victim ensemble. Extensive experiments on benchmark datasets and real-world APIs validate that the imitators can succeed in outperforming the original black-box models. We consider this as a milestone in the research of imitation attack, especially on NLP APIs, as the superior performance could influence the defense or even publishing strategy of API providers.