No Arabic abstract
Most prior work on definition modeling has not accounted for polysemy, or has done so by considering definition modeling for a target word in a given context. In contrast, in this study, we propose a context-agnostic approach to definition modeling, based on multi-sense word embeddings, that is capable of generating multiple definitions for a target word. In further, contrast to most prior work, which has primarily focused on English, we evaluate our proposed approach on fifteen different datasets covering nine languages from several language families. To evaluate our approach we consider several variations of BLEU. Our results demonstrate that our proposed multi-sense model outperforms a single-sense model on all fifteen datasets.
We introduce BlaBla, an open-source Python library for extracting linguistic features with proven clinical relevance to neurological and psychiatric diseases across many languages. BlaBla is a unifying framework for accelerating and simplifying clinical linguistic research. The library is built on state-of-the-art NLP frameworks and supports multithreaded/GPU-enabled feature extraction via both native Python calls and a command line interface. We describe BlaBlas architecture and clinical validation of its features across 12 diseases. We further demonstrate the application of BlaBla to a task visualizing and classifying language disorders in three languages on real clinical data from the AphasiaBank dataset. We make the codebase freely available to researchers with the hope of providing a consistent, well-validated foundation for the next generation of clinical linguistic research.
Natural language generation (NLG) spans a broad range of tasks, each of which serves for specific objectives and desires different properties of generated text. The complexity makes automatic evaluation of NLG particularly challenging. Previous work has typically focused on a single task and developed individual evaluation metrics based on specific intuitions. In this paper, we propose a unifying perspective based on the nature of information change in NLG tasks, including compression (e.g., summarization), transduction (e.g., text rewriting), and creation (e.g., dialog). Information alignment between input, context, and output text plays a common central role in characterizing the generation. With automatic alignment prediction models, we develop a family of interpretable metrics that are suitable for evaluating key aspects of different NLG tasks, often without need of gold reference data. Experiments show the uniformly designed metrics achieve stronger or comparable correlations with human judgement compared to state-of-the-art metrics in each of diverse tasks, including text summarization, style transfer, and knowledge-grounded dialog.
Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders XTREME benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We release the benchmark to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.
Word embeddings, which represent a word as a point in a vector space, have become ubiquitous to several NLP tasks. A recent line of work uses bilingual (two languages) corpora to learn a different vector for each sense of a word, by exploiting crosslingual signals to aid sense identification. We present a multi-view Bayesian non-parametric algorithm which improves multi-sense word embeddings by (a) using multilingual (i.e., more than two languages) corpora to significantly improve sense embeddings beyond what one achieves with bilingual information, and (b) uses a principled approach to learn a variable number of senses per word, in a data-driven manner. Ours is the first approach with the ability to leverage multilingual corpora efficiently for multi-sense representation learning. Experiments show that multilingual training significantly improves performance over monolingual and bilingual training, by allowing us to combine different parallel corpora to leverage multilingual context. Multilingual training yields comparable performance to a state of the art mono-lingual model trained on five times more training data.
Precisely defining the terminology is the first step in scientific communication. Developing neural text generation models for definition generation can circumvent the labor-intensity curation, further accelerating scientific discovery. Unfortunately, the lack of large-scale terminology definition dataset hinders the process toward definition generation. In this paper, we present a large-scale terminology definition dataset Graphine covering 2,010,648 terminology definition pairs, spanning 227 biomedical subdisciplines. Terminologies in each subdiscipline further form a directed acyclic graph, opening up new avenues for developing graph-aware text generation models. We then proposed a novel graph-aware definition generation model Graphex that integrates transformer with graph neural network. Our model outperforms existing text generation models by exploiting the graph structure of terminologies. We further demonstrated how Graphine can be used to evaluate pretrained language models, compare graph representation learning methods and predict sentence granularity. We envision Graphine to be a unique resource for definition generation and many other NLP tasks in biomedicine.