Do you want to publish a course? Click here

Learning Effective Representations for Person-Job Fit by Feature Fusion

190   0   0.0 ( 0 )
 Added by Wei Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Person-job fit is to match candidates and job posts on online recruitment platforms using machine learning algorithms. The effectiveness of matching algorithms heavily depends on the learned representations for the candidates and job posts. In this paper, we propose to learn comprehensive and effective representations of the candidates and job posts via feature fusion. First, in addition to applying deep learning models for processing the free text in resumes and job posts, which is adopted by existing methods, we extract semantic entities from the whole resume (and job post) and then learn features for them. By fusing the features from the free text and the entities, we get a comprehensive representation for the information explicitly stated in the resume and job post. Second, however, some information of a candidate or a job may not be explicitly captured in the resume or job post. Nonetheless, the historical applications including accepted and rejected cases can reveal some implicit intentions of the candidates or recruiters. Therefore, we propose to learn the representations of implicit intentions by processing the historical applications using LSTM. Last, by fusing the representations for the explicit and implicit intentions, we get a more comprehensive and effective representation for person-job fit. Experiments over 10 months real data show that our solution outperforms existing methods with a large margin. Ablation studies confirm the contribution of each component of the fused representation. The extracted semantic entities help interpret the matching results during the case study.



rate research

Read More

Job recommendation is a crucial part of the online job recruitment business. To match the right person with the right job, a good representation of job postings is required. Such representations should ideally recommend jobs with fitting titles, aligned skill set, and reasonable commute. To address these aspects, we utilize three information graphs ( job-job, skill-skill, job-skill) from historical job data to learn a joint representation for both job titles and skills in a shared latent space. This allows us to gain a representation of job postings/ resume using both elements, which subsequently can be combined with location. In this paper, we first present how the presentation of each component is obtained, and then we discuss how these different representations are combined together into one single space to acquire the final representation. The results of comparing the proposed methodology against different base-line methods show significant improvement in terms of relevancy.
Understanding search queries is critical for shopping search engines to deliver a satisfying customer experience. Popular shopping search engines receive billions of unique queries yearly, each of which can depict any of hundreds of user preferences or intents. In order to get the right results to customers it must be known queries like inexpensive prom dresses are intended to not only surface results of a certain product type but also products with a low price. Referred to as query intents, examples also include preferences for author, brand, age group, or simply a need for customer service. Recent works such as BERT have demonstrated the success of a large transformer encoder architecture with language model pre-training on a variety of NLP tasks. We adapt such an architecture to learn intents for search queries and describe methods to account for the noisiness and sparseness of search query data. We also describe cost effective ways of hosting transformer encoder models in context with low latency requirements. With the right domain-specific training we can build a shareable deep learning model whose internal representation can be reused for a variety of query understanding tasks including query intent identification. Model sharing allows for fewer large models needed to be served at inference time and provides a platform to quickly build and roll out new search query classifiers.
Documents often contain complex physical structures, which make the Document Layout Analysis (DLA) task challenging. As a pre-processing step for content extraction, DLA has the potential to capture rich information in historical or scientific documents on a large scale. Although many deep-learning-based methods from computer vision have already achieved excellent performance in detecting emph{Figure} from documents, they are still unsatisfactory in recognizing the emph{List}, emph{Table}, emph{Text} and emph{Title} category blocks in DLA. This paper proposes a VTLayout model fusing the documents deep visual, shallow visual, and text features to localize and identify different category blocks. The model mainly includes two stages, and the three feature extractors are built in the second stage. In the first stage, the Cascade Mask R-CNN model is applied directly to localize all category blocks of the documents. In the second stage, the deep visual, shallow visual, and text features are extracted for fusion to identify the category blocks of documents. As a result, we strengthen the classification power of different category blocks based on the existing localization technique. The experimental results show that the identification capability of the VTLayout is superior to the most advanced method of DLA based on the PubLayNet dataset, and the F1 score is as high as 0.9599.
Recently, the retrieval models based on dense representations have been gradually applied in the first stage of the document retrieval tasks, showing better performance than traditional sparse vector space models. To obtain high efficiency, the basic structure of these models is Bi-encoder in most cases. However, this simple structure may cause serious information loss during the encoding of documents since the queries are agnostic. To address this problem, we design a method to mimic the queries on each of the documents by an iterative clustering process and represent the documents by multiple pseudo queries (i.e., the cluster centroids). To boost the retrieval process using approximate nearest neighbor search library, we also optimize the matching function with a two-step score calculation procedure. Experimental results on several popular ranking and QA datasets show that our model can achieve state-of-the-art results.
Automatic email categorization is an important application of text classification. We study the automatic reply of email business messages in Brazilian Portuguese. We present a novel corpus containing messages from a real application, and baseline categorization experiments using Naive Bayes and support Vector Machines. We then discuss the effect of lemmatization and the role of part-of-speech tagging filtering on precision and recall. Support Vector Machines classification coupled with nonlemmatized selection of verbs, nouns and adjectives was the best approach, with 87.3% maximum accuracy. Straightforward lemmatization in Portuguese led to the lowest classification results in the group, with 85.3% and 81.7% precision in SVM and Naive Bayes respectively. Thus, while lemmatization reduced precision and recall, part-of-speech filtering improved overall results.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا