We propose an efficient and robust iterative solution to the multi-object matching problem. We first clarify serious limitations of current methods as well as the inappropriateness of the standard iteratively reweighted least squares procedure. In view of these limitations, we suggest a novel and more reliable iterative reweighting strategy that incorporates information from higher-order neighborhoods by exploiting the graph connection Laplacian. We demonstrate the superior performance of our procedure over state-of-the-art methods using both synthetic and real datasets.
Line matching plays an essential role in structure from motion (SFM) and simultaneous localization and mapping (SLAM), especially in low-textured and repetitive scenes. In this paper, we present a new method of using a graph convolution network to match line segments in a pair of images, and we design a graph-based strategy of matching line segments with relaxing to an optimal transport problem. In contrast to hand-crafted line matching algorithms, our approach learns local line segment descriptor and the matching simultaneously through end-to-end training. The results show our method outperforms the state-of-the-art techniques, and especially, the recall is improved from 45.28% to 70.47% under a similar presicion. The code of our work is available at https://github.com/mameng1/GraphLineMatching.
Recent works leveraging Graph Neural Networks to approach graph matching tasks have shown promising results. Recent progress in learning discrete distributions poses new opportunities for learning graph matching models. In this work, we propose a new model, Stochastic Iterative Graph MAtching (SIGMA), to address the graph matching problem. Our model defines a distribution of matchings for a graph pair so the model can explore a wide range of possible matchings. We further introduce a novel multi-step matching procedure, which learns how to refine a graph pairs matching results incrementally. The model also includes dummy nodes so that the model does not have to find matchings for nodes without correspondence. We fit this model to data via scalable stochastic optimization. We conduct extensive experiments across synthetic graph datasets as well as biochemistry and computer vision applications. Across all tasks, our results show that SIGMA can produce significantly improved graph matching results compared to state-of-the-art models. Ablation studies verify that each of our components (stochastic training, iterative matching, and dummy nodes) offers noticeable improvement.
Multi-sensor perception is crucial to ensure the reliability and accuracy in autonomous driving system, while multi-object tracking (MOT) improves that by tracing sequential movement of dynamic objects. Most current approaches for multi-sensor multi-object tracking are either lack of reliability by tightly relying on a single input source (e.g., center camera), or not accurate enough by fusing the results from multiple sensors in post processing without fully exploiting the inherent information. In this study, we design a generic sensor-agnostic multi-modality MOT framework (mmMOT), where each modality (i.e., sensors) is capable of performing its role independently to preserve reliability, and further improving its accuracy through a novel multi-modality fusion module. Our mmMOT can be trained in an end-to-end manner, enables joint optimization for the base feature extractor of each modality and an adjacency estimator for cross modality. Our mmMOT also makes the first attempt to encode deep representation of point cloud in data association process in MOT. We conduct extensive experiments to evaluate the effectiveness of the proposed framework on the challenging KITTI benchmark and report state-of-the-art performance. Code and models are available at https://github.com/ZwwWayne/mmMOT.
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP) that becomes infeasible for shapes with high sampling density. A promising research direction is to tackle such quadratic optimization problems over binary variables with quantum annealing, which allows for some problems a more efficient search in the solution space. Unfortunately, enforcing the linear equality constraints in QAPs via a penalty significantly limits the success probability of such methods on currently available quantum hardware. To address this limitation, this paper proposes Q-Match, i.e., a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm, which allows solving problems of an order of magnitude larger than current quantum methods. It implicitly enforces the QAP constraints by updating the current estimates in a cyclic fashion. Further, Q-Match can be applied iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems. Using the latest quantum annealer, the D-Wave Advantage, we evaluate the proposed method on a subset of QAPLIB as well as on isometric shape matching problems from the FAUST dataset.
Recent developments in deep learning have revolutionized the paradigm of image restoration. However, its applications on real image denoising are still limited, due to its sensitivity to training data and the complex nature of real image noise. In this work, we combine the robustness merit of model-based approaches and the learning power of data-driven approaches for real image denoising. Specifically, by integrating graph Laplacian regularization as a trainable module into a deep learning framework, we are less susceptible to overfitting than pure CNN-based approaches, achieving higher robustness to small datasets and cross-domain denoising. First, a sparse neighborhood graph is built from the output of a convolutional neural network (CNN). Then the image is restored by solving an unconstrained quadratic programming problem, using a corresponding graph Laplacian regularizer as a prior term. The proposed restoration pipeline is fully differentiable and hence can be end-to-end trained. Experimental results demonstrate that our work is less prone to overfitting given small training data. It is also endowed with strong cross-domain generalization power, outperforming the state-of-the-art approaches by a remarkable margin.
Yunpeng Shi
,Shaohan Li
,Gilad Lerman
.
(2020)
.
"Robust Multi-object Matching via Iterative Reweighting of the Graph Connection Laplacian"
.
Yunpeng Shi
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا