Do you want to publish a course? Click here

Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason Over Implicit Knowledge

95   0   0.0 ( 0 )
 Added by Alon Talmor
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

To what extent can a neural network systematically reason over symbolic facts? Evidence suggests that large pre-trained language models (LMs) acquire some reasoning capacity, but this ability is difficult to control. Recently, it has been shown that Transformer-based models succeed in consistent reasoning over explicit symbolic facts, under a closed-world assumption. However, in an open-domain setup, it is desirable to tap into the vast reservoir of implicit knowledge already encoded in the parameters of pre-trained LMs. In this work, we provide a first demonstration that LMs can be trained to reliably perform systematic reasoning combining both implicit, pre-trained knowledge and explicit natural language statements. To do this, we describe a procedure for automatically generating datasets that teach a model new reasoning skills, and demonstrate that models learn to effectively perform inference which involves implicit taxonomic and world knowledge, chaining and counting. Finally, we show that teaching models to reason generalizes beyond the training distribution: they successfully compose the usage of multiple reasoning skills in single examples. Our work paves a path towards open-domain systems that constantly improve by interacting with users who can instantly correct a model by adding simple natural language statements.

rate research

Read More

80 - Xiang Deng , Yu Su , Alyssa Lees 2021
We present ReasonBert, a pre-training method that augments language models with the ability to reason over long-range relations and multiple, possibly hybrid contexts. Unlike existing pre-training methods that only harvest learning signals from local contexts of naturally occurring texts, we propose a generalized notion of distant supervision to automatically connect multiple pieces of text and tables to create pre-training examples that require long-range reasoning. Different types of reasoning are simulated, including intersecting multiple pieces of evidence, bridging from one piece of evidence to another, and detecting unanswerable cases. We conduct a comprehensive evaluation on a variety of extractive question answering datasets ranging from single-hop to multi-hop and from text-only to table-only to hybrid that require various reasoning capabilities and show that ReasonBert achieves remarkable improvement over an array of strong baselines. Few-shot experiments further demonstrate that our pre-training method substantially improves sample efficiency.
114 - Yujia Qin , Yankai Lin , Jing Yi 2021
Recent explorations of large-scale pre-trained language models (PLMs) such as GPT-3 have revealed the power of PLMs with huge amounts of parameters, setting off a wave of training ever-larger PLMs. However, training a large-scale PLM requires tremendous amounts of computational resources, which is time-consuming and expensive. In addition, existing large-scale PLMs are mainly trained from scratch individually, ignoring the availability of many existing well-trained PLMs. To this end, we explore the question that how can previously trained PLMs benefit training larger PLMs in future. Specifically, we introduce a novel pre-training framework named knowledge inheritance (KI), which combines both self-learning and teacher-guided learning to efficiently train larger PLMs. Sufficient experimental results demonstrate the feasibility of our KI framework. We also conduct empirical analyses to explore the effects of teacher PLMs pre-training settings, including model architecture, pre-training data, etc. Finally, we show that KI can well support lifelong learning and knowledge transfer.
304 - Bin He , Di Zhou , Jinghui Xiao 2019
Complex node interactions are common in knowledge graphs, and these interactions also contain rich knowledge information. However, traditional methods usually treat a triple as a training unit during the knowledge representation learning (KRL) procedure, neglecting contextualized information of the nodes in knowledge graphs (KGs). We generalize the modeling object to a very general form, which theoretically supports any subgraph extracted from the knowledge graph, and these subgraphs are fed into a novel transformer-based model to learn the knowledge embeddings. To broaden usage scenarios of knowledge, pre-trained language models are utilized to build a model that incorporates the learned knowledge representations. Experimental results demonstrate that our model achieves the state-of-the-art performance on several medical NLP tasks, and improvement above TransE indicates that our KRL method captures the graph contextualized information effectively.
Recently, text world games have been proposed to enable artificial agents to understand and reason about real-world scenarios. These text-based games are challenging for artificial agents, as it requires understanding and interaction using natural language in a partially observable environment. In this paper, we improve the semantic understanding of the agent by proposing a simple RL with LM framework where we use transformer-based language models with Deep RL models. We perform a detailed study of our framework to demonstrate how our model outperforms all existing agents on the popular game, Zork1, to achieve a score of 44.7, which is 1.6 higher than the state-of-the-art model. Our proposed approach also performs comparably to the state-of-the-art models on the other set of text games.
The development of over-parameterized pre-trained language models has made a significant contribution toward the success of natural language processing. While over-parameterization of these models is the key to their generalization power, it makes them unsuitable for deployment on low-capacity devices. We push the limits of state-of-the-art Transformer-based pre-trained language model compression using Kronecker decomposition. We use this decomposition for compression of the embedding layer, all linear mappings in the multi-head attention, and the feed-forward network modules in the Transformer layer. We perform intermediate-layer knowledge distillation using the uncompressed model as the teacher to improve the performance of the compressed model. We present our KroneckerBERT, a compressed version of the BERT_BASE model obtained using this framework. We evaluate the performance of KroneckerBERT on well-known NLP benchmarks and show that for a high compression factor of 19 (5% of the size of the BERT_BASE model), our KroneckerBERT outperforms state-of-the-art compression methods on the GLUE. Our experiments indicate that the proposed model has promising out-of-distribution robustness and is superior to the state-of-the-art compression methods on SQuAD.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا