Do you want to publish a course? Click here

From Bad to Worse: Airline Boarding Changes in Response to COVID-19

283   0   0.0 ( 0 )
 Added by Ashok Srinivasan
 Publication date 2020
  fields Physics
and research's language is English
 Authors T. Islam




Ask ChatGPT about the research

Airlines have introduced a back-to-front boarding process in response to the COVID-19 pandemic. It is motivated by the desire to reduce passengers likelihood of passing close to seated passengers when they take their seats. However, our prior work on the risk of Ebola spread in airplanes suggested that the driving force for increased exposure to infection transmission risk is the clustering of passengers while waiting for others to stow their luggage and take their seats. In this work, we examine whether the new boarding processes lead to increased or decreased risk of infection spread. We also study the reasons behind the risk differences associated with different boarding processes. We accomplish this by simulating the new boarding processes using pedestrian dynamics and compare them against alternatives. Our results show that back-to-front boarding roughly doubles the infection exposure compared with random boarding. It also increases exposure by around 50% compared to a typical boarding process prior to the outbreak of COVID-19. While keeping middle seats empty yields a substantial reduction in exposure, our results show that the different boarding processes have similar relative strengths in this case as with middle seats occupied. We show that the increased exposure arises from the proximity between passengers moving in the aisle and while seated. Our results suggest that airlines either revert to their earlier boarding process or adopt the better random process.



rate research

Read More

Human mobility is crucial to understand the transmission pattern of COVID-19 on spatially embedded geographic networks. This pattern seems unpredictable, and the propagation appears unstoppable, resulting in over 350,000 death tolls in the U.S. by the end of 2020. Here, we create the spatiotemporal inter-county mobility network using 10 TB (Terabytes) trajectory data of 30 million smart devices in the U.S. in the first six months of 2020. We investigate its bound percolation by removing the weakly connected edges. The mobility network becomes vulnerable and prone to reach its criticality and thus experience surprisingly abrupt phase transitions. Despite the complex behaviors of the mobility network, we devised a novel approach to identify a small, manageable set of recurrent critical bridges, connecting the giant component and the second-largest component. These adaptive links, located across the United States, played a key role as valves connecting components in divisions and regions during the pandemic. Beyond, our numerical results unveil that network characteristics determine the critical thresholds and the bridge locations. The findings provide new insights into managing and controlling the connectivity of mobility networks during unprecedented disruptions. The work can also potentially offer practical future infectious diseases both globally and locally.
The objective of this paper is to examine population response to COVID-19 and associated policy interventions through detecting early-warning signals in time series of visits to points of interest (POIs). Complex systems, such as cities, demonstrate early-warning signals when they approach phase transitions responding to external perturbation, including crises, policy changes, and human behavior changes. In urban systems, population visits to POIs represent a state in the complex systems that are cities. These states may undergo phase transitions due to population response to pandemic risks and intervention policies. In this study, we conducted early-warning signal detection on population visits to POIs to examine population response to pandemic risks. We examined two early-warning signals, the increase of autocorrelation at-lag-1 and standard deviation, in time series of population visits to POIs in 17 metropolitan cities in the United States of America. The results show that: (1) early-warning signals for population response to COVID-19 were detected between February 14 and March 11, 2020 in 17 cities; (2) detected population response had started prior to shelter-in-place orders in 17 cities; (3) early-warning signals detected from the essential POIs visits appeared earlier than those from non-essential POIs; and 4) longer time lags between detected population response and shelter-in-place orders led to a less decrease in POI visits. The results show the importance of detecting early-warning signals during crises in cities as complex systems. Early-warning signals could provide important insights regarding the timing and extent of population response to crises to inform policy makers.
Ozone (O$_{3}$) is a key oxidant and pollutant in the lower atmosphere. Significant increases in surface O$_{3}$ have been reported in many cities during the COVID-19 lockdown. Here we conduct comprehensive observation and modeling analyses of surface O$_{3}$ across China for periods before and during the lockdown. We find that daytime O$_{3}$ decreased in the subtropical south, in contrast to increases in most other regions. Meteorological changes and emission reductions both contributed to the O$_{3}$ changes, with a larger impact from the former especially in central China. The plunge in nitrogen oxide (NO$_{x}$) emission contributed to O$_{3}$ increases in populated regions, whereas the reduction in volatile organic compounds (VOC) contributed to O$_{3}$ decreases across the country. Due to a decreasing level of NO$_{x}$ saturation from north to south, the emission reduction in NO$_{x}$ (46%) and VOC (32%) contributed to net O$_{3}$ increases in north China; the opposite effects of NO$_{x}$ decrease (49%) and VOC decrease (24%) balanced out in central China, whereas the comparable decreases (45-55%) in these two precursors contributed to net O$_{3}$ declines in south China. Our study highlights the complex dependence of O$_{3}$ on its precursors and the importance of meteorology in the short-term O$_{3}$ variability.
We investigate, through a data-driven contact tracing model, the transmission of COVID-19 inside buses during distinct phases of the pandemic in a large Brazilian city. From this microscopic approach, we recover the networks of close contacts within consecutive time windows. A longitudinal comparison is then performed by upscaling the traced contacts with the transmission computed from a mean-field compartmental model for the entire city. Our results show that the effective reproduction numbers inside the buses, $Re^{bus}$, and in the city, $Re^{city}$, followed a compatible behavior during the first wave of the local outbreak. Moreover, by distinguishing the close contacts of healthcare workers in the buses, we discovered that their transmission, $Re^{health}$, during the same period, was systematically higher than $Re^{bus}$. This result reinforces the need for special public transportation policies for highly exposed groups of people.
Evaluating relative changes leads to additional insights which would remain hidden when only evaluating absolute changes. We analyze a dataset describing mobility of mobile phones in Austria before, during COVID-19 lock-down measures until recent. By applying compositional data analysis we show that formerly hidden information becomes available: we see that the elderly population groups increase relative mobility and that the younger groups especially on weekends also do not decrease their mobility as much as the others.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا