Do you want to publish a course? Click here

Momentum-resolved spin splitting in Mn-doped trivial CdTe and topological HgTe semiconductors

71   0   0.0 ( 0 )
 Added by Carmine Autieri Dr.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exchange coupling between localized spins and band or topological states accounts for giant magnetotransport and magnetooptical effects as well as determines spin-spin interactions in magnetic insulators and semiconductors. However, even in archetypical dilute magnetic semiconductors such as Cd$_{1-x}$Mn$_x$Te and Hg$_{1-x}$Mn$_x$Te the evolution of this coupling with the wave vector is not understood. A series of experiments have demonstrated that exchange-induced splitting of magnetooptical spectra of Cd$_{1-x}$Mn$_x$Te and Zn$_{1-x}$Mn$_x$Te at the L points of the Brillouin zone is, in contradiction to the existing theories, more than one order of magnitude smaller compared to its value at the zone center and can show an unexpected sign of the effective Lande factors. The origin of these findings we elucidate quantitatively by combining: (i) relativistic first-principles density functional calculations; (ii) a tight-binding approach that takes carefully into account k-dependence of the potential and kinetic sp-d exchange interactions; (iii) a theory of magnetic circular dichroism (MCD) for $E_1$ and $E_1$ + $Delta_1$ optical transitions, developed here within the envelope function $kp$ formalism for the L point of the Brillouin zone in zinc-blende crystals. This combination of methods leads to the conclusion that the physics of MCD at the boundary of the Brillouin zone is strongly affected by the strength of two relativistic effects in particular compounds: (i) the mass-velocity term that controls the distance of the conduction band at the L point to the upper Hubbard band of Mn ions and, thus, a relative magnitude and sign of the exchange splittings in the conduction and valence bands; (ii) the spin-momentum locking by spin-orbit coupling that reduces exchange splitting depending on the orientation of particular L valleys with respect to the magnetization direction.



rate research

Read More

Quantum wells of HgTe doped with Mn display the quantum anomalous Hall effect due to the magnetic moments of the Mn ions. In the presence of a magnetic field, these magnetic moments induce an effective nonlinear Zeeman effect, causing a nonmonotonic bending of the Landau levels. As a consequence, the quantized (spin) Hall conductivity exhibits a reentrant behavior as one increases the magnetic field. Here, we will discuss the appearance of different types of reentrant behavior as a function of Mn concentration, well thickness, and temperature, based on the qualitative form of the Landau-level spectrum in an effective four-band model.
The behavior of spin diffusion in doped semiconductors is shown to be qualitatively different than in undoped (intrinsic) ones. Whereas a spin packet in an intrinsic semiconductor must be a multiple-band disturbance, involving inhomogeneous distributions of both electrons and holes, in a doped semiconductor a single-band disturbance is possible. For n-doped nonmagnetic semiconductors the enhancement of diffusion due to a degenerate electron sea in the conduction band is much larger for these single-band spin packets than for charge packets, and can exceed an order of magnitude at low temperatures even for equilibrium dopings as small as 10^16 cm^-3. In n-doped ferromagnetic and semimagnetic semiconductors the motion of spin packets polarized antiparallel to the equilibrium carrier spin polarization is predicted to be an order of magnitude faster than for parallel polarized spin packets. These results are reversed for p-doped semiconductors.
A remarkable progress towards functional ferromagnetic semiconductor materials for spintronics has been achieved in p-type (Ga,Mn)As. Robust hole-mediated ferromagnetism has, however, been observed also in other III-V hosts such as antimonides, GaP or (Al,Ga)As which opens a wide area of possibilities for optimizing the host composition towards higher ferromagnetic Curie temperatures. Here we explore theoretically ferromagnetism and Mn incorporation in Ga(As,P) and (Al,Ga)As ternary hosts. While alloying (Ga,Mn)As with Al has only a small effect on the Curie temperature we predict a sizable enhancement of Curie temperatures in the smaller lattice constant Ga(As,P) hosts. Mn-doped Ga(As,P) is also favorable, as compared to (Al,Ga)As, with respect to the formation of carrier and moment compensating interstitial Mn impurities. In (Ga,Mn)(As,P) we find a marked decrease of the partial concentration of these detrimental impurities with increasing P content.
The diamond and zinc-blende semiconductors are well-known and have been widely studied for decades. Yet, their electronic structure still surprises with unexpected topological properties of the valence bands. In this joint theoretical and experimental investigation we demonstrate for the benchmark compounds InSb and GaAs that the electronic structure features topological surface states below the Fermi energy. Our parity analysis shows that the spin-orbit split-off band near the valence band maximum exhibits a strong topologically non-trivial behavior characterized by the $mathcal{Z}_2$ invariants $(1;000)$. The non-trivial character emerges instantaneously with non-zero spin-orbit coupling, in contrast to the conventional topological phase transition mechanism. textit{Ab initio}-based tight-binding calculations resolve topological surface states in the occupied electronic structure of InSb and GaAs, further confirmed experimentally by soft X-ray angle-resolved photoemission from both materials. Our findings are valid for all other materials whose valence bands are adiabatically linked to those of InSb, i.e., many diamond and zinc-blende semiconductors, as well as other related materials, such as half-Heusler compounds.
We present first-principles electronic structure calculations of Mn doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn-d levels in GaAs. We find good agreement between computed values and estimates from photoemisison experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا