Do you want to publish a course? Click here

Mn-doped Ga(As,P) and (Al,Ga)As ferromagnetic semiconductors

77   0   0.0 ( 0 )
 Added by Tomas Jungwirth
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

A remarkable progress towards functional ferromagnetic semiconductor materials for spintronics has been achieved in p-type (Ga,Mn)As. Robust hole-mediated ferromagnetism has, however, been observed also in other III-V hosts such as antimonides, GaP or (Al,Ga)As which opens a wide area of possibilities for optimizing the host composition towards higher ferromagnetic Curie temperatures. Here we explore theoretically ferromagnetism and Mn incorporation in Ga(As,P) and (Al,Ga)As ternary hosts. While alloying (Ga,Mn)As with Al has only a small effect on the Curie temperature we predict a sizable enhancement of Curie temperatures in the smaller lattice constant Ga(As,P) hosts. Mn-doped Ga(As,P) is also favorable, as compared to (Al,Ga)As, with respect to the formation of carrier and moment compensating interstitial Mn impurities. In (Ga,Mn)(As,P) we find a marked decrease of the partial concentration of these detrimental impurities with increasing P content.



rate research

Read More

We report on the determination of micromagnetic parameters of epilayers of the ferromagnetic semiconductor (Ga,Mn)As, which has easy axis in the sample plane, and (Ga,Mn)(As,P) which has easy axis perpendicular to the sample plane. We use an optical analog of ferromagnetic resonance where the laser-pulse-induced precession of magnetization is measured directly in the time domain. By the analysis of a single set of pump-and-probe magneto-optical data we determined the magnetic anisotropy fields, the spin stiffness and the Gilbert damping constant in these two materials. We show that incorporation of 10% of phosphorus in (Ga,Mn)As with 6% of manganese leads not only to the expected sign change of the perpendicular to plane anisotropy field but also to an increase of the Gilbert damping and to a reduction of the spin stiffness. The observed changes in the micromagnetic parameters upon incorporating P in (Ga,Mn)As are consistent with the reduced hole density, conductivity, and Curie temperature of the (Ga,Mn)(As,P) material. We report that the magnetization precession damping is stronger for the n = 1 spin wave resonance mode than for the n = 0 uniform magnetization precession mode.
324 - M. Kopecky , J. Kub , F. Maca 2010
We report high resolution x-ray diffraction measurements of (Ga,Mn)As and (Ga,Mn)(As,P) epilayers. We observe a structural anisotropy in the form of stacking faults which are present in the (111) and (11-1) planes and absent in the (-111) and (1-11) planes. The stacking faults produce no macroscopic strain. They occupy 0.01 - 0.1 per cent of the epilayer volume. Full-potential density functional calculations evidence an attraction of Mn_Ga impurities to the stacking faults. We argue that the enhanced Mn density along the common [1-10] direction of the stacking fault planes produces sufficiently strong [110]/[1-10] symmetry breaking mechanism to account for the in-plane uniaxial magnetocrystalline anisotropy of these ferromagnetic semiconductors.
The spin polarization of the electron current in a p-(Ga,Mn)As-n-(Al,Ga)As-Zener tunnel diode, which is embedded in a light-emitting diode, has been studied theoretically. A series of self-consistent simulations determines the charge distribution, the band bending, and the current-voltage characteristics for the entire structure. An empirical tight-binding model, together with the Landauer- Buttiker theory of coherent transport has been developed to study the current spin polarization. This dual approach allows to explain the experimentally observed high magnitude and strong bias dependence of the current spin polarization.
387 - P. Nemec , V. Novak , N. Tesarova 2012
(Ga,Mn)As is at the forefront of research exploring the synergy of magnetism with the physics and technology of semiconductors, and has led to discoveries of new spin-dependent phenomena and functionalities applicable to a wide range of material systems. Its recognition and utility as an ideal model material for spintronics research has been undermined by the large scatter in reported semiconducting doping trends and micromagnetic parameters. In this paper we establish these basic material characteristics by individually optimizing the highly non-equilibrium synthesis for each Mn-doping level and by simultaneously determining all micromagnetic parameters from one set of magneto-optical pump-and-probe measurements. Our (Ga,Mn)As thin-film epilayers, spannig the wide range of accessible dopings, have sharp thermodynamic Curie point singularities typical of uniform magnetic systems. The materials show systematic trends of increasing magnetization, carrier density, and Curie temperature (reaching 188 K) with increasing doping, and monotonous doping dependence of the Gilbert damping constant of ~0.1-0.01 and the spin stiffness of ~2-3 meVnm^2. These results render (Ga,Mn)As well controlled degenerate semiconductor with basic magnetic characteristics comparable to common band ferromagnets.
74 - J. Sadowski , S. Kret , A. Siusys 2017
(Ga,Mn)As in wurtzite crystal structure, is coherently grown by molecular beam epitaxy on the {1100} side facets of wurtizte (Ga,In)As nanowires and further encapsulated by (Ga,Al)As and low temperature GaAs. For the first time a true long-range ferromagnetic magnetic order is observed in non-planar (Ga,Mn)As, which is attributed to a more effective hole confinement in the shell containing Mn by a proper selection/choice of both the core and outer shell materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا