Do you want to publish a course? Click here

Integrable generalisations of Dirac magnetic monopole

66   0   0.0 ( 0 )
 Added by Alexander Veselov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We classify certain integrable (both classical and quantum) generalisations of Dirac magnetic monopole on topological sphere $S^2$ with constant magnetic field, completing the previous local results by Ferapontov, Sayles and Veselov. We show that there are two integrable families of such generalisations with integrals, which are quadratic in momenta. The first family corresponds to the classical Clebsch systems, which can be interpreted as Dirac magnetic monopole in harmonic electric field. The second family is new and can be written in terms of elliptic functions on sphere $S^2$ with very special metrics.



rate research

Read More

We discuss the structure of the framed moduli space of Bogomolny monopoles for arbitrary symmetry breaking and extend the definition of its stratification to the case of arbitrary compact Lie groups. We show that each stratum is a union of submanifolds for which we conjecture that the natural $L^2$ metric is hyperKahler. The dimensions of the strata and of these submanifolds are calculated, and it is found that for the latter, the dimension is always a multiple of four.
It is shown that planar quantum dynamics can be related to 3-body quantum dynamics in the space of relative motion with a special class of potentials. As an important special case the $O(d)$ symmetry reduction from $d$ degrees of freedom to one degree is presented. A link between two-dimensional (super-integrable) systems and 3-body (super-integrable) systems is revealed. As illustration we present number of examples. We demonstrate that the celebrated Calogero-Wolfes 3-body potential has a unique property: two-dimensional quantum dynamics coincides with 3-body quantum dynamics on the line at $d=1$; it is governed by the Tremblay-Turbiner-Winternitz potential for parameter $k=3$.
For a particle in the magnetic field of a cloud of monopoles, the naturally associated 2-form on phase space is not closed, and so the corresponding bracket operation on functions does not satisfy the Jacobi identity. Thus, it is not a Poisson bracket; however, it is twisted Poisson in the sense that the Jacobiator comes from a closed 3-form. The space $mathcal D$ of densities on phase space is the state space of a plasma. The twisted Poisson bracket on phase-space functions gives rise to a bracket on functions on $mathcal D$. In the absence of monopoles, this is again a Poisson bracket. It has recently been shown by Heninger and Morrison that this bracket is not Poisson when monopoles are present. In this note, we give an example where it is not even twisted Poisson.
In the first part of the paper, we classify linear integrable (multi-dimensionally consistent) quad-equations on bipartite isoradial quad-graphs in $mathbb C$, enjoying natural symmetries and the property that the restriction of their solutions to the black vertices satisfies a Laplace type equation. The classification reduces to solving a functional equation. Under certain restriction, we give a complete solution of the functional equation, which is expressed in terms of elliptic functions. We find two real analytic reductions, corresponding to the cases when the underlying complex torus is of a rectangular type or of a rhombic type. The solution corresponding to the rectangular type was previously found by Boutillier, de Tili`ere and Raschel. Using the multi-dimensional consistency, we construct the discrete exponential function, which serves as a basis of solutions of the quad-equation. In the second part of the paper, we focus on the integrability of discrete linear variational problems. We consider discrete pluri-harmonic functions, corresponding to a discrete 2-form with a quadratic dependence on the fields at black vertices only. In an important particular case, we show that the problem reduces to a two-field generalization of the classical star-triangle map. We prove the integrability of this novel 3D system by showing its multi-dimensional consistency. The Laplacians from the first part come as a special solution of the two-field star-triangle map.
237 - Luigi Martina 2011
Inspired by the geometrical methods allowing the introduction of mechanical systems confined in the plane and endowed with exotic galilean symmetry, we resort to the Lagrange-Souriau 2-form formalism, in order to look for a wide class of 3D systems, involving not commuting and/or not canonical variables, but possessing geometric as well gauge symmetries in position and momenta space too. As a paradigmatic example, a charged particle simultaneously interacting with a magnetic monopole and a dual monopole in momenta space is considered. The main features of the motions, conservation laws and the analogies with the planar case are discussed. Possible physical realizations of the model are proposed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا