No Arabic abstract
In over two decades of research, the field of dictionary learning has gathered a large collection of successful applications, and theoretical guarantees for model recovery are known only whenever optimization is carried out in the same model class as that of the underlying dictionary. This work characterizes the surprising phenomenon that dictionary recovery can be facilitated by searching over the space of larger over-realized models. This observation is general and independent of the specific dictionary learning algorithm used. We thoroughly demonstrate this observation in practice and provide an analysis of this phenomenon by tying recovery measures to generalization bounds. In particular, we show that model recovery can be upper-bounded by the empirical risk, a model-dependent quantity and the generalization gap, reflecting our empirical findings. We further show that an efficient and provably correct distillation approach can be employed to recover the correct atoms from the over-realized model. As a result, our meta-algorithm provides dictionary estimates with consistently better recovery of the ground-truth model.
In the dictionary learning (or sparse coding) problem, we are given a collection of signals (vectors in $mathbb{R}^d$), and the goal is to find a basis in which the signals have a sparse (approximate) representation. The problem has received a lot of attention in signal processing, learning, and theoretical computer science. The problem is formalized as factorizing a matrix $X (d times n)$ (whose columns are the signals) as $X = AY$, where $A$ has a prescribed number $m$ of columns (typically $m ll n$), and $Y$ has columns that are $k$-sparse (typically $k ll d$). Most of the known theoretical results involve assuming that the columns of the unknown $A$ have certain incoherence properties, and that the coefficient matrix $Y$ has random (or partly random) structure. The goal of our work is to understand what can be said in the absence of such assumptions. Can we still find $A$ and $Y$ such that $X approx AY$? We show that this is possible, if we allow violating the bounds on $m$ and $k$ by appropriate factors that depend on $k$ and the desired approximation. Our results rely on an algorithm for what we call the threshold correlation problem, which turns out to be related to hypercontractive norms of matrices. We also show that our algorithmic ideas apply to a setting in which some of the columns of $X$ are outliers, thus giving similar guarantees even in this challenging setting.
A dynamical neural network consists of a set of interconnected neurons that interact over time continuously. It can exhibit computational properties in the sense that the dynamical systems evolution and/or limit points in the associated state space can correspond to numerical solutions to certain mathematical optimization or learning problems. Such a computational system is particularly attractive in that it can be mapped to a massively parallel computer architecture for power and throughput efficiency, especially if each neuron can rely solely on local information (i.e., local memory). Deriving gradients from the dynamical networks various states while conforming to this last constraint, however, is challenging. We show that by combining ideas of top-down feedback and contrastive learning, a dynamical network for solving the l1-minimizing dictionary learning problem can be constructed, and the true gradients for learning are provably computable by individual neurons. Using spiking neurons to construct our dynamical network, we present a learning process, its rigorous mathematical analysis, and numerical results on several dictionary learning problems.
In this paper, we investigate the problem of overfitting in deep reinforcement learning. Among the most common benchmarks in RL, it is customary to use the same environments for both training and testing. This practice offers relatively little insight into an agents ability to generalize. We address this issue by using procedurally generated environments to construct distinct training and test sets. Most notably, we introduce a new environment called CoinRun, designed as a benchmark for generalization in RL. Using CoinRun, we find that agents overfit to surprisingly large training sets. We then show that deeper convolutional architectures improve generalization, as do methods traditionally found in supervised learning, including L2 regularization, dropout, data augmentation and batch normalization.
Agents trained via deep reinforcement learning (RL) routinely fail to generalize to unseen environments, even when these share the same underlying dynamics as the training levels. Understanding the generalization properties of RL is one of the challenges of modern machine learning. Towards this goal, we analyze policy learning in the context of Partially Observable Markov Decision Processes (POMDPs) and formalize the dynamics of training levels as instances. We prove that, independently of the exploration strategy, reusing instances introduces significant changes on the effective Markov dynamics the agent observes during training. Maximizing expected rewards impacts the learned belief state of the agent by inducing undesired instance specific speedrunning policies instead of generalizeable ones, which are suboptimal on the training set. We provide generalization bounds to the value gap in train and test environments based on the number of training instances, and use insights based on these to improve performance on unseen levels. We propose training a shared belief representation over an ensemble of specialized policies, from which we compute a consensus policy that is used for data collection, disallowing instance specific exploitation. We experimentally validate our theory, observations, and the proposed computational solution over the CoinRun benchmark.
In this paper, we develop a parameter estimation method for factorially parametrized models such as Factorial Gaussian Mixture Model and Factorial Hidden Markov Model. Our contributions are two-fold. First, we show that the emission matrix of the standard Factorial Model is unidentifiable even if the true assignment matrix is known. Secondly, we address the issue of identifiability by making a one component sharing assumption and derive a parameter learning algorithm for this case. Our approach is based on a dictionary learning problem of the form $X = O R$, where the goal is to learn the dictionary $O$ given the data matrix $X$. We argue that due to the specific structure of the activation matrix $R$ in the shared component factorial mixture model, and an incoherence assumption on the shared component, it is possible to extract the columns of the $O$ matrix without the need for alternating between the estimation of $O$ and $R$.