No Arabic abstract
Retailers and major consumers of electricity generally purchase an important percentage of their estimated electricity needs years ahead in the forward market. This long-term electricity procurement task consists of determining when to buy electricity so that the resulting energy cost is minimised, and the forecast consumption is covered. In this scientific article, the focus is set on a yearly base load product from the Belgian forward market, named calendar (CAL), which is tradable up to three years ahead of the delivery period. This research paper introduces a novel algorithm providing recommendations to either buy electricity now or wait for a future opportunity based on the history of CAL prices. This algorithm relies on deep learning forecasting techniques and on an indicator quantifying the deviation from a perfectly uniform reference procurement policy. On average, the proposed approach surpasses the benchmark procurement policies considered and achieves a reduction in costs of 1.65% with respect to the perfectly uniform reference procurement policy achieving the mean electricity price. Moreover, in addition to automating the complex electricity procurement task, this algorithm demonstrates more consistent results throughout the years. Eventually, the generality of the solution presented makes it well suited for solving other commodity procurement problems.
In this paper, we formulate a method for minimising the expectation value of the procurement cost of electricity in two popular spot markets: {it day-ahead} and {it intra-day}, under the assumption that expectation value of unit prices and the distributions of prediction errors for the electricity demand traded in two markets are known. The expectation value of the total electricity cost is minimised over two parameters that change the amounts of electricity. Two parameters depend only on the expected unit prices of electricity and the distributions of prediction errors for the electricity demand traded in two markets. That is, even if we do not know the predictions for the electricity demand, we can determine the values of two parameters that minimise the expectation value of the procurement cost of electricity in two popular spot markets. We demonstrate numerically that the estimate of two parameters often results in a small variance of the total electricity cost, and illustrate the usefulness of the proposed procurement method through the analysis of actual data.
We formulate an equilibrium model of intraday trading in electricity markets. Agents face balancing constraints between their customers consumption plus intraday sales and their production plus intraday purchases. They have continuously updated forecast of their customers consumption at maturity with decreasing volatility error. Forecasts are prone to idiosyncratic noise as well as common noise (weather). Agents production capacities are subject to independent random outages, which are each modelled by a Markov chain. The equilibrium price is defined as the price that minimises trading cost plus imbalance cost of each agent and satisfies the usual market clearing condition. Existence and uniqueness of the equilibrium are proved, and we show that the equilibrium price and the optimal trading strategies are martingales. The main economic insights are the following. (i) When there is no uncertainty on generation, it is shown that the market price is a convex combination of forecasted marginal cost of each agent, with deterministic weights. Furthermore, the equilibrium market price follows Almgren and Chrisss model and we identify the fundamental part as well as the permanent market impact. It turns out that heterogeneity across agents is a necessary condition for the Samuelsons effect to hold. (ii) When there is production uncertainty, the price volatility becomes stochastic but converges to the case without production uncertainty when the number of agents increases to infinity. Further, on a two-agent case, we show that the potential outages of a low marginal cost producer reduces her sales position.
In this paper, a multivariate constrained robust M-regression (MCRM) method is developed to estimate shaping coefficients for electricity forward prices. An important benefit of the new method is that model arbitrage can be ruled out at an elementary level, as all shaping coefficients are treated simultaneously. Moreover, the new method is robust to outliers, such that the provided results are stable and not sensitive to isolated sparks or dips in the market. An efficient algorithm is presented to estimate all shaping coefficients at a low computational cost. To illustrate its good performance, the method is applied to German electricity prices.
We study the structure of locational marginal prices in day-ahead and real-time wholesale electricity markets. In particular, we consider the case of two North American markets and show that the price correlations contain information on the locational structure of the grid. We study various clustering methods and introduce a type of correlation function based on event synchronization for spiky time series, and another based on string correlations of location names provided by the markets. This allows us to reconstruct aspects of the locational structure of the grid.
We present results on simulations of a stock market with heterogeneous, cumulative information setup. We find a non-monotonic behaviour of traders returns as a function of their information level. Particularly, the average informed agents underperform random traders; only the most informed agents are able to beat the market. We also study the effect of a strategy updating mechanism, when traders have the possibility of using other pieces of information than the fundamental value. These results corroborate the latter ones: it is only for the most informed player that it is rewarding to stay fundamentalist. The simulations reproduce some stylized facts of tick-by-tick stock-exchange data and globally show informational efficiency.