We study the quaternionic Calabi-Yau problem in HKT geometry introduced by Alesker and Verbitsky on 8-dimensional 2-step nilmanifolds with an abelian hypercomplex structure. We show that the quaternionic Monge-Amp`ere equation on these manifolds can always be solved for every data which is invariant by the action of a 3-dimensional torus.
In this essay we aim to explore the Geometric aspects of the Calabi Conjecture and highlight the techniques of nonlinear Elliptic PDE theory used by S.T. Yau [SY] in obtaining a solution to the problem. Yau proves the existence of a Geometric structure using differential equations, giving importance to the idea that deep insights into geometry can be obtained by studying solutions of such equations. Yaus proof of the existence of a specific class of metrics have found a natural interpretation in recent developments in Theoretical Physics most notably in the formulation of String Theory. We will also attempt to explore the importance of a special case of Yaus solution known as Calabi-Yau Manifolds in the context of holonomy.
We prove formulas for the p-adic logarithm of quaternionic Darmon points on p-adic tori and modular abelian varieties over Q having purely multiplicative reduction at p. These formulas are amenable to explicit computations and are the first to treat Stark-Heegner type points on higher-dimensional abelian varieties.
We study the topology of Hitchin fibrations via abelian surfaces. We establish the P=W conjecture for genus $2$ curves and arbitrary rank. In higher genus and arbitrary rank, we prove that P=W holds for the subalgebra of cohomology generated by even tautological classes. Furthermore, we show that all tautological generators lie in the correct pieces of the perverse filtration as predicted by the P=W conjecture. In combination with recent work of Mellit, this reduces the full conjecture to the multiplicativity of the perverse filtration. Our main technique is to study the Hitchin fibration as a degeneration of the Hilbert-Chow morphism associated with the moduli space of certain torsion sheaves on an abelian surface, where the symmetries induced by Markmans monodromy operators play a crucial role.
A nilmanifold is a (left) quotient of a nilpotent Lie group by a cocompact lattice. A hypercomplex structure on a manifold is a triple of complex structure operators satisfying the quaternionic relations. A hypercomplex nilmanifold is a compact quotient of a nilpotent Lie group equipped with a left-invariant hypercomplex structure. Such a manifold admits a whole 2-dimensional sphere $S^2$ of complex structures induced by quaternions. We prove that for any hypercomplex nilmanifold $M$ and a generic complex structure $Lin S^2$, the complex manifold $(M,L)$ has algebraic dimension 0. A stronger result is proven when the hypercomplex nilmanifold is abelian. Consider the Lie algebra of left-invariant vector fields of Hodge type (1,0) on the corresponding nilpotent Lie group with respect to some complex structure $Iin S^2$. A hypercomplex nilmanifold is called abelian when this Lie algebra is abelian. We prove that all complex subvarieties of $(M,L)$ for generic $Lin S^2$ on a hypercomplex abelian nilmanifold are also hypercomplex nilmanifolds.
Giovanni Gentili
,Luigi Vezzoni
.
(2020)
.
"The quaternionic Calabi conjecture on abelian hypercomplex nilmanifolds viewed as tori fibrations"
.
Luigi Vezzoni
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا