No Arabic abstract
A nilmanifold is a (left) quotient of a nilpotent Lie group by a cocompact lattice. A hypercomplex structure on a manifold is a triple of complex structure operators satisfying the quaternionic relations. A hypercomplex nilmanifold is a compact quotient of a nilpotent Lie group equipped with a left-invariant hypercomplex structure. Such a manifold admits a whole 2-dimensional sphere $S^2$ of complex structures induced by quaternions. We prove that for any hypercomplex nilmanifold $M$ and a generic complex structure $Lin S^2$, the complex manifold $(M,L)$ has algebraic dimension 0. A stronger result is proven when the hypercomplex nilmanifold is abelian. Consider the Lie algebra of left-invariant vector fields of Hodge type (1,0) on the corresponding nilpotent Lie group with respect to some complex structure $Iin S^2$. A hypercomplex nilmanifold is called abelian when this Lie algebra is abelian. We prove that all complex subvarieties of $(M,L)$ for generic $Lin S^2$ on a hypercomplex abelian nilmanifold are also hypercomplex nilmanifolds.
Using Galois theory, we construct explicitly (in all complex dimensions >1) an infinite family of simple complex tori of algebraic dimension 0 with Picard number 0.
A family of algebraic curves covering a projective variety $X$ is called a web of curves on $X$ if it has only finitely many members through a general point of $X$. A web of curves on $X$ induces a web-structure, in the sense of local differential geometry, in a neighborhood of a general point of $X$. We study how the local differential geometry of the web-structure affects the global algebraic geometry of $X$. Under two geometric assumptions on the web-structure, the pairwise non-integrability condition and the bracket-generating condition, we prove that the local differential geometry determines the global algebraic geometry of $X$, up to generically finite algebraic correspondences. The two geometric assumptions are satisfied, for example, when $X subset {bf P}^N$ is a Fano submanifold of Picard number 1, and the family of lines covering $X$ becomes a web. In this special case, we have a stronger result that the local differential geometry of the web-structure determines $X$ up to biregular equivalences. As an application, we show that if $X, X subset {bf P}^N, dim X geq 3,$ are two such Fano manifolds of Picard number 1, then any surjective morphism $f: X to X$ is an isomorphism.
For each $n geq 3$ the authors provide an $n$-dimensional rigid compact complex manifold of Kodaira dimension $1$. First they construct a series of singular quotients of products of $(n-1)$ Fermat curves with the Klein quartic, which are rigid. Then using toric geometry a suitable resolution of singularities is constructed and the deformation theories of the singular model and of the resolutions are compared, showing the rigidity of the resolutions.
Let $X$ be a smooth projective real algebraic variety. We give new positive and negative results on the problem of approximating a submanifold of the real locus of $X$ by real loci of subvarieties of $X$, as well as on the problem of determining the subgroups of the Chow groups of $X$ generated by subvarieties with nonsingular real loci, or with empty real loci.
We explain that in the study of the asymptotic expansion at the origin of a period integral like $gamma$z $omega$/df or of a hermitian period like f =s $rho$.$omega$/df $land$ $omega$ /df the computation of the Bernstein polynomial of the fresco (filtered differential equation) associated to the pair of germs (f, $omega$) gives a better control than the computation of the Bernstein polynomial of the full Brieskorn module of the germ of f at the origin. Moreover, it is easier to compute as it has a better functoriality and smaller degree. We illustrate this in the case where f $in$ C[x 0 ,. .. , x n ] has n + 2 monomials and is not quasi-homogeneous, by giving an explicite simple algorithm to produce a multiple of the Bernstein polynomial when $omega$ is a monomial holomorphic volume form. Several concrete examples are given.