Do you want to publish a course? Click here

Listen to What You Want: Neural Network-based Universal Sound Selector

85   0   0.0 ( 0 )
 Added by Tsubasa Ochiai
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Being able to control the acoustic events (AEs) to which we want to listen would allow the development of more controllable hearable devices. This paper addresses the AE sound selection (or removal) problems, that we define as the extraction (or suppression) of all the sounds that belong to one or multiple desired AE classes. Although this problem could be addressed with a combination of source separation followed by AE classification, this is a sub-optimal way of solving the problem. Moreover, source separation usually requires knowing the maximum number of sources, which may not be practical when dealing with AEs. In this paper, we propose instead a universal sound selection neural network that enables to directly select AE sounds from a mixture given user-specified target AE classes. The proposed framework can be explicitly optimized to simultaneously select sounds from multiple desired AE classes, independently of the number of sources in the mixture. We experimentally show that the proposed method achieves promising AE sound selection performance and could be generalized to mixtures with a number of sources that are unseen during training.



rate research

Read More

In this paper, we investigate the impact of different standard environmental sound representations (spectrograms) on the recognition performance and adversarial attack robustness of a victim residual convolutional neural network. Averaged over various experiments on three benchmarking environmental sound datasets, we found the ResNet-18 model outperforms other deep learning architectures such as GoogLeNet and AlexNet both in terms of classification accuracy and the number of training parameters. Therefore we set this model as our front-end classifier for subsequent investigations. Herein, we measure the impact of different settings required for generating more informative mel-frequency cepstral coefficient (MFCC), short-time Fourier transform (STFT), and discrete wavelet transform (DWT) representations on our front-end model. This measurement involves comparing the classification performance over the adversarial robustness. On the balance of average budgets allocated by adversary and the cost of attack, we demonstrate an inverse relationship between recognition accuracy and model robustness against six attack algorithms. Moreover, our experimental results show that while the ResNet-18 model trained on DWT spectrograms achieves the highest recognition accuracy, attacking this model is relatively more costly for the adversary compared to other 2D representations.
We study the problem of unlearning datapoints from a learnt model. The learner first receives a dataset $S$ drawn i.i.d. from an unknown distribution, and outputs a model $widehat{w}$ that performs well on unseen samples from the same distribution. However, at some point in the future, any training datapoint $z in S$ can request to be unlearned, thus prompting the learner to modify its output model while still ensuring the same accuracy guarantees. We initiate a rigorous study of generalization in machine unlearning, where the goal is to perform well on previously unseen datapoints. Our focus is on both computational and storage complexity. For the setting of convex losses, we provide an unlearning algorithm that can unlearn up to $O(n/d^{1/4})$ samples, where $d$ is the problem dimension. In comparison, in general, differentially private learning (which implies unlearning) only guarantees deletion of $O(n/d^{1/2})$ samples. This demonstrates a novel separation between differential privacy and machine unlearning.
Due to the simple design pipeline, end-to-end (E2E) neural models for speech enhancement (SE) have attracted great interest. In order to improve the performance of the E2E model, the locality and temporal sequential properties of speech should be efficiently taken into account when modelling. However, in most current E2E models for SE, these properties are either not fully considered or are too complex to be realized. In this paper, we propose an efficient E2E SE model, termed WaveCRN. In WaveCRN, the speech locality feature is captured by a convolutional neural network (CNN), while the temporal sequential property of the locality feature is modeled by stacked simple recurrent units (SRU). Unlike a conventional temporal sequential model that uses a long short-term memory (LSTM) network, which is difficult to parallelize, SRU can be efficiently parallelized in calculation with even fewer model parameters. In addition, in order to more effectively suppress the noise components in the input noisy speech, we derive a novel restricted feature masking (RFM) approach that performs enhancement on the feature maps in the hidden layers; this is different from the approach that applies the estimated ratio mask on the noisy spectral features, which is commonly used in speech separation methods. Experimental results on speech denoising and compressed speech restoration tasks confirm that with the lightweight architecture of SRU and the feature-mapping-based RFM, WaveCRN performs comparably with other state-of-the-art approaches with notably reduced model complexity and inference time.
This paper introduces StutterNet, a novel deep learning based stuttering detection capable of detecting and identifying various types of disfluencies. Most of the existing work in this domain uses automatic speech recognition (ASR) combined with language models for stuttering detection. Compared to the existing work, which depends on the ASR module, our method relies solely on the acoustic signal. We use a time-delay neural network (TDNN) suitable for capturing contextual aspects of the disfluent utterances. We evaluate our system on the UCLASS stuttering dataset consisting of more than 100 speakers. Our method achieves promising results and outperforms the state-of-the-art residual neural network based method. The number of trainable parameters of the proposed method is also substantially less due to the parameter sharing scheme of TDNN.
The present paper introduces a deep neural network (DNN) for predicting the instantaneous loudness of a sound from its time waveform. The DNN was trained using the output of a more complex model, called the Cambridge loudness model. While a modern PC can perform a few hundred loudness computations per second using the Cambridge loudness model, it can perform more than 100,000 per second using the DNN, allowing real-time calculation of loudness. The root-mean-square deviation between the predictions of instantaneous loudness level using the two models was less than 0.5 phon for unseen types of sound. We think that the general approach of simulating a complex perceptual model by a much faster DNN can be applied to other perceptual models to make them run in real time.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا