Do you want to publish a course? Click here

Variational Structure and Two Dimensional Jet Flows for Compressible Euler System with Non-zero Vorticity

139   0   0.0 ( 0 )
 Added by Chunjing Xie
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate the well-posedness theory of compressible jet flows for two dimensional steady Euler system with non-zero vorticity. One of the key observations is that the stream function formulation for two dimensional compressible steady Euler system with non-zero vorticity enjoys a variational structure, so that the jet problem can be reformulated as a domain variation problem. This allows us to adapt the framework developed by Alt, Caffarelli and Friedman for the one-phase free boundary problems to obtain the existence and uniqueness of smooth solutions to the subsonic jet problem with non-zero vorticity. We also show that there is a critical mass flux, such that as long as the incoming mass flux does not exceed the critical value, the well-posedness theory holds true.



rate research

Read More

279 - I.I. Vainshtein 2013
The general problem of a perfect incompressible fluid motion with vortex areas and variant constant vorticities is formulated. The M.A. Goldshtiks variational approach is considered on research of dual problems for flows with vortex and potential areas that describe detached flow and a motion model of a perfect incompressible fluid in field of Coriolis forces.
We prove that for the two-dimensional steady complete compressible Euler system, with given uniform upcoming supersonic flows, the following three fundamental flow patterns (special solutions) in gas dynamics involving transonic shocks are all unique in the class of piecewise $C^1$ smooth functions, under appropriate conditions on the downstream subsonic flows: $(rmnum{1})$ the normal transonic shocks in a straight duct with finite or infinite length, after fixing a point the shock-front passing through; $(rmnum{2})$ the oblique transonic shocks attached to an infinite wedge; $(rmnum{3})$ a flat Mach configuration containing one supersonic shock, two transonic shocks, and a contact discontinuity, after fixing the point the four discontinuities intersect. These special solutions are constructed traditionally under the assumption that they are piecewise constant, and they have played important roles in the studies of mathematical gas dynamics. Our results show that the assumption of piecewise constant can be replaced by some more weaker assumptions on the downstream subsonic flows, which are sufficient to uniquely determine these special solutions. Mathematically, these are uniqueness results on solutions of free boundary problems of a quasi-linear system of elliptic-hyperbolic composite-mixed type in bounded or unbounded planar domains, without any assumptions on smallness. The proof relies on an elliptic system of pressure $p$ and the tangent of the flow angle $w=v/u$ obtained by decomposition of the Euler system in Lagrangian coordinates, and a newly developed method for the $L^{infty}$ estimate that is independent of the free boundaries, by combining the maximum principles of elliptic equations, and careful analysis of shock polar applied on the (maybe curved) shock-fronts.
In this paper, we investigate steady inviscid compressible flows with radial symmetry in an annulus. The major concerns are transonic flows with or without shocks. One of the main motivations is to elucidate the role played by the angular velocity in the structure of steady inviscid compressible flows. We give a complete classification of flow patterns in terms of boundary conditions at the inner and outer circle. Due to the nonzero angular velocity, many new flow patterns will appear. There exists accelerating or decelerating smooth transonic flows in an annulus satisfying one side boundary conditions at the inner or outer circle with all sonic points being nonexceptional and noncharacteristically degenerate. More importantly, it is found that besides the well-known supersonic-subsonic shock in a divergent nozzle as in the case without angular velocity, there exists a supersonic-supersonic shock solution, where the downstream state may change smoothly from supersonic to subsonic. Furthermore, there exists a supersonic-sonic shock solution where the shock circle and the sonic circle coincide, which is new and interesting.
76 - Francois Hamel 2019
In this paper, we consider steady Euler flows in two-dimensional bounded annuli, as well as in exterior circular domains, in punctured disks and in the punctured plane. We always assume rigid wall boundary conditions. We prove that, if the flow does not have any stagnation point, and if it satisfies further conditions at infinity in the case of an exterior domain or at the center in the case of a punctured disk or the punctured plane, then the flow is circular, namely the streamlines are concentric circles. In other words, the flow then inherits the radial symmetry of the domain. The proofs are based on the study of the trajectories of the flow and the orthogonal trajectories of the gradient of the stream function, which is shown to satisfy a semilinear elliptic equation in the whole domain. In exterior or punctured domains, the method of moving planes is applied to some almost circular domains located between some streamlines of the flow, and the radial symmetry of the stream function is shown by a limiting argument. The paper also contains two Serrin-type results in simply or doubly connected bounded domains with free boundaries. Here, the flows are further assumed to have constant norm on each connected component of the boundary and the domains are then proved to be disks or annuli.
In the spirit of making high-order discontinuous Galerkin (DG) methods more competitive, researchers have developed the hybridized DG methods, a class of discontinuous Galerkin methods that generalizes the Hybridizable DG (HDG), the Embedded DG (EDG) and the Interior Embedded DG (IEDG) methods. These methods are amenable to hybridization (static condensation) and thus to more computationally efficient implementations. Like other high-order DG methods, however, they may suffer from numerical stability issues in under-resolved fluid flow simulations. In this spirit, we introduce the hybridized DG methods for the compressible Euler and Navier-Stokes equations in entropy variables. Under a suitable choice of the stabilization matrix, the scheme can be shown to be entropy stable and satisfy the Second Law of Thermodynamics in an integral sense. The performance and robustness of the proposed family of schemes are illustrated through a series of steady and unsteady flow problems in subsonic, transonic, and supersonic regimes. The hybridized DG methods in entropy variables show the optimal accuracy order given by the polynomial approximation space, and are significantly superior to their counterparts in conservation variables in terms of stability and robustness, particularly for under-resolved and shock flows.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا