Do you want to publish a course? Click here

Bell Non-Locality in Many Body Quantum Systems with Exponential Decay of Correlations

95   0   0.0 ( 0 )
 Added by Cristhiano Duarte
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using Bell-inequalities as a tool to explore non-classical physical behaviours, in this paper we analyze what one can expect to find in many-body quantum physics. Concretely, framing the usual correlation scenarios as a concrete spin-lattice, we want to know whether or not it is possible to violate a Bell-inequality restricted to this scenario. Using clustering theorems, we are able to show that a large family of quantum many-body systems behave almost locally, violating Bell-inequalities (if so) only by a non-significant amount. We also provide examples, explain some of our assumptions via counter-examples and present all the proofs for our theorems. We hope the paper is self-contained.



rate research

Read More

While the interest in multipartite nonlocality has grown in recent years, its existence in large quantum systems is difficult to confirm experimentally. This is mostly due to the inadequacy of standard multipartite Bell inequalities to many-body systems: such inequalities usually rely on expectation values involving many parties and require an individual addressing of each party. In a recent work [J. Tura et al. Science 344, 6189 (2014)] some of us proposed simpler Bell inequalities overcoming such difficulties, opening the way for the detection of Bell correlations with trusted collective measurements through Bell correlation witnesses [R. Schmied et al. Science 352, 441 (2016)], hence demonstrating the presence of Bell correlations with assumptions on the statistics. Here, we address the question of assessing the number of particles sharing genuinely nonlocal correlations in a multipartite system. This endeavour is a priori challenging, as known Bell inequalities for genuine nonlocality suffer from the above shortcomings, plus a number of measurement settings scaling exponentially with the system size. We first show that most of these constraints drop once the witnesses corresponding to these inequalities are expressed: in systems where multipartite expectation values can be evaluated, these witnesses can reveal genuine nonlocality for an arbitrary number of particles with just two collective measurements. We then introduce a general framework focused on two-body Bell-like inequalities. We show that they also provide information about the number of particles that are genuinely nonlocal. Then, we characterize all such inequalities for a finite system size. We provide witnesses of Bell correlation depth $kleq6$ for any number of parties, within experimental reach. A violation for depth $6$ is achieved with existing data from an ensemble of 480 atoms.
A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this paper, we address here the question of the statistics required to witness Bell correlated states, i.e. states violating a Bell inequality, in such experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of measurement settings, two outcomes per party and one- and two-body correlators only. Based on these inequalities, we then build up improved witnesses able to detect Bell-correlated states in many-body systems using two collective measurements only. These witnesses can potentially detect Bell correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics needed to convincingly conclude that a measured state is Bell-correlated.
We derive an exact lower bound to a universal measure of frustration in degenerate ground states of quantum many-body systems. The bound results in the sum of two contributions: entanglement and classical correlations arising from local measurements. We show that average frustration properties are completely determined by the behavior of the maximally mixed ground state. We identify sufficient conditions for a quantum spin system to saturate the bound, and for models with twofold degeneracy we prove that average and local frustration coincide.
Bell inequalities define experimentally observable quantities to detect non-locality. In general, they involve correlation functions of all the parties. Unfortunately, these measurements are hard to implement for systems consisting of many constituents, where only few-body correlation functions are accessible. Here we demonstrate that higher-order correlation functions are not necessary to certify nonlocality in multipartite quantum states by constructing Bell inequalities from one- and two-body correlation functions for an arbitrary number of parties. The obtained inequalities are violated by some of the Dicke states, which arise naturally in many-body physics as the ground states of the two-body Lipkin-Meshkov-Glick Hamiltonian.
We derive a version of the adiabatic theorem that is especially suited for applications in adiabatic quantum computation, where it is reasonable to assume that the adiabatic interpolation between the initial and final Hamiltonians is controllable. Assuming that the Hamiltonian is analytic in a finite strip around the real time axis, that some number of its time-derivatives vanish at the initial and final times, and that the target adiabatic eigenstate is non-degenerate and separated by a gap from the rest of the spectrum, we show that one can obtain an error between the final adiabatic eigenstate and the actual time-evolved state which is exponentially small in the evolution time, where this time itself scales as the square of the norm of the time-derivative of the Hamiltonian, divided by the cube of the minimal gap.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا