Do you want to publish a course? Click here

Bell correlations in a many-body system with finite statistics

133   0   0.0 ( 0 )
 Added by Jean-Daniel Bancal
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this paper, we address here the question of the statistics required to witness Bell correlated states, i.e. states violating a Bell inequality, in such experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of measurement settings, two outcomes per party and one- and two-body correlators only. Based on these inequalities, we then build up improved witnesses able to detect Bell-correlated states in many-body systems using two collective measurements only. These witnesses can potentially detect Bell correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics needed to convincingly conclude that a measured state is Bell-correlated.



rate research

Read More

While the interest in multipartite nonlocality has grown in recent years, its existence in large quantum systems is difficult to confirm experimentally. This is mostly due to the inadequacy of standard multipartite Bell inequalities to many-body systems: such inequalities usually rely on expectation values involving many parties and require an individual addressing of each party. In a recent work [J. Tura et al. Science 344, 6189 (2014)] some of us proposed simpler Bell inequalities overcoming such difficulties, opening the way for the detection of Bell correlations with trusted collective measurements through Bell correlation witnesses [R. Schmied et al. Science 352, 441 (2016)], hence demonstrating the presence of Bell correlations with assumptions on the statistics. Here, we address the question of assessing the number of particles sharing genuinely nonlocal correlations in a multipartite system. This endeavour is a priori challenging, as known Bell inequalities for genuine nonlocality suffer from the above shortcomings, plus a number of measurement settings scaling exponentially with the system size. We first show that most of these constraints drop once the witnesses corresponding to these inequalities are expressed: in systems where multipartite expectation values can be evaluated, these witnesses can reveal genuine nonlocality for an arbitrary number of particles with just two collective measurements. We then introduce a general framework focused on two-body Bell-like inequalities. We show that they also provide information about the number of particles that are genuinely nonlocal. Then, we characterize all such inequalities for a finite system size. We provide witnesses of Bell correlation depth $kleq6$ for any number of parties, within experimental reach. A violation for depth $6$ is achieved with existing data from an ensemble of 480 atoms.
Using Bell-inequalities as a tool to explore non-classical physical behaviours, in this paper we analyze what one can expect to find in many-body quantum physics. Concretely, framing the usual correlation scenarios as a concrete spin-lattice, we want to know whether or not it is possible to violate a Bell-inequality restricted to this scenario. Using clustering theorems, we are able to show that a large family of quantum many-body systems behave almost locally, violating Bell-inequalities (if so) only by a non-significant amount. We also provide examples, explain some of our assumptions via counter-examples and present all the proofs for our theorems. We hope the paper is self-contained.
207 - Matteo Fadel , Jordi Tura 2018
We show that spin systems with infinite-range interactions can violate at thermal equilibrium a multipartite Bell inequality, up to a finite critical temperature $T_c$. Our framework can be applied to a wide class of spin systems and Bell inequalities, to study whether nonlocality occurs naturally in quantum many-body systems close to the ground state. Moreover, we also show that the low-energy spectrum of the Bell operator associated to such systems can be well approximated by the one of a quantum harmonic oscillator, and that spin-squeezed states are optimal in displaying Bell correlations for such Bell inequalities.
We consider a bipartite scenario where two parties hold ensembles of $1/2$-spins which can only be measured collectively. We give numerical arguments supporting the conjecture that in this scenario no Bell inequality can be violated for arbitrary numbers of spins if only first order moment observables are available. We then give a recipe to achieve a significant Bell violation with a split many-body system when this restriction is lifted. This highlights the strong requirements needed to detect bipartite quantum correlations in many-body systems device-independently.
180 - Matteo Fadel , Jordi Tura 2017
We present a method to certify the presence of Bell correlations in experimentally observed statistics, and to obtain new Bell inequalities. Our approach is based on relaxing the conditions defining the set of correlations obeying a local hidden variable model, yielding a convergent hierarchy of semidefinite programs (SdPs). Because the size of these SdPs is independent of the number of parties involved, this technique allows to characterize correlations in many-body systems. As an example, we illustrate our method with the experimental data presented in [Science 352, 441 (2016)]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا