Do you want to publish a course? Click here

Non-uniform localised distortions in generalised elasticity for liquid crystals

95   0   0.0 ( 0 )
 Added by Carlos Naya
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse a recent generalised free-energy for liquid crystals posited by Virga and falling in the class of quartic functionals in the spatial gradients of the nematic director. We review some known interesting solutions, i. e., uniform heliconical structures, and we find new liquid crystal configurations, which closely resemble some novel, experimentally detected, structures called Skyrmion tubes. These new configurations are characterised by a localised pattern given by the variation of the conical angle. We study the equilibrium differential equations and find numerical solutions and analytical approximations.



rate research

Read More

Cholesteric Liquid Crystals (CLCs), subject to externally applied magnetic fields and confined between two parallel planar surfaces with strong homeotropic anchoring conditions, are found to undergo transitions to different types of helicoidal configurations with disclinations. Analytical and numerical studies are performed in order to characterise their properties. In particular, we produce a phase diagram for the transitions from the nematic state to the helicoidal phases in terms of the molecular chirality and the strength of the applied magnetic field.
We analyze the interaction with uniform external fields of nematic liquid crystals within a recent generalized free-energy posited by Virga and falling in the class of quartic functionals in the spatial gradients of the nematic director. We review some known interesting solutions, i. e., uniform heliconical structures, which correspond to the so-called twist-bend nematic phase and we also study the transition between this phase and the standard uniform nematic one. Moreover, we find liquid crystal configurations, which closely resemble some novel, experimentally detected, structures called Skyrmion Tubes. Skyrmion Tubes are characterized by a localized cylindrically-symmetric pattern surrounded by either twist-bend or uniform nematic phase. We study the equilibrium differential equations and find numerical solutions and analytical approximations.
The director configuration of disclination lines in nematic liquid crystals in the presence of an external magnetic field is evaluated. Our method is a combination of a polynomial expansion for the director and of further analytical approximations which are tested against a numerical shooting method. The results are particularly simple when the elastic constants are equal, but we discuss the general case of elastic anisotropy. The director field is continuous everywhere apart from a straight line segment whose length depends on the value of the magnetic field. This indicates the possibility of an elongated defect core for disclination lines in nematics due to an external magnetic field.
The properties of crystals consisting of several components can be widely tuned. Often solid solutions are produced, where substitutional or interstitional disorder determines the crystal thermodynamic and mechanical properties. The chemical and structural disorder impedes the study of the elasticity of such solid solutions, since standard procedures like potential expansions cannot be applied. We present a generalization of a density-functional based approach recently developed for one-component crystals to multi-component crystals. It yields expressions for the elastic constants valid in solid solutions with arbitrary amounts of point defects and up to the melting temperature. Further, both acoustic and optical phonon eigenfrequencies can be computed in linear response from the equilibrium particle densities and established classical density functionals. As a proof of principle, dispersion relations are computed for two different binary crystals: A random fcc crystal as an example for a substitutional, and a disordered sodium chloride structure as an example of an interstitial solid solution. In cases where one of the components couples only weakly to the others, the dispersion relations develop characteristic signatures. The acoustic branches become flat in much of the first Brillouin zone, and a crossover between acoustic and optic branches takes place at a wavelength which can far exceed the lattice spacing.*
Blue phase liquid crystals are not usually considered to exhibit a flexoelectrooptic effect, due to the polar nature of flexoelectric switching and the cubic or amorphous structure of blue phases. Here, we derive the form of the flexoelectric contribution to the Kerr constant of blue phases, and experimentally demonstrate and measure the separate contributions to the Kerr constant arising from flexoelectric and dielectric effects. Hence, a non-polar flexoelectrooptic effect is demonstrated in blue phase liquid crystals, which will have consequences for the engineering of novel blue-phase electrooptic technology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا