Do you want to publish a course? Click here

Foreseeing the Benefits of Incidental Supervision

95   0   0.0 ( 0 )
 Added by Hangfeng He
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Real-world applications often require improved models by leveraging a range of cheap incidental supervision signals. These could include partial labels, noisy labels, knowledge-based constraints, and cross-domain or cross-task annotations -- all having statistical associations with gold annotations but not exactly the same. However, we currently lack a principled way to measure the benefits of these signals to a given target task, and the common practice of evaluating these benefits is through exhaustive experiments with various models and hyperparameters. This paper studies whether we can, in a single framework, quantify the benefits of various types of incidental signals for a given target task without going through combinatorial experiments. We propose a unified PAC-Bayesian motivated informativeness measure, PABI, that characterizes the uncertainty reduction provided by incidental supervision signals. We demonstrate PABIs effectiveness by quantifying the value added by various types of incidental signals to sequence tagging tasks. Experiments on named entity recognition (NER) and question answering (QA) show that PABIs predictions correlate well with learning performance, providing a promising way to determine, ahead of learning, which supervision signals would be beneficial.



rate research

Read More

Deep neural networks can empirically perform efficient hierarchical learning, in which the layers learn useful representations of the data. However, how they make use of the intermediate representations are not explained by recent theories that relate them to shallow learners such as kernels. In this work, we demonstrate that intermediate neural representations add more flexibility to neural networks and can be advantageous over raw inputs. We consider a fixed, randomly initialized neural network as a representation function fed into another trainable network. When the trainable network is the quadratic Taylor model of a wide two-layer network, we show that neural representation can achieve improved sample complexities compared with the raw input: For learning a low-rank degree-$p$ polynomial ($p geq 4$) in $d$ dimension, neural representation requires only $tilde{O}(d^{lceil p/2 rceil})$ samples, while the best-known sample complexity upper bound for the raw input is $tilde{O}(d^{p-1})$. We contrast our result with a lower bound showing that neural representations do not improve over the raw input (in the infinite width limit), when the trainable network is instead a neural tangent kernel. Our results characterize when neural representations are beneficial, and may provide a new perspective on why depth is important in deep learning.
A crucial aspect in reliable machine learning is to design a deployable system in generalizing new related but unobserved environments. Domain generalization aims to alleviate such a prediction gap between the observed and unseen environments. Previous approaches commonly incorporated learning invariant representation for achieving good empirical performance. In this paper, we reveal that merely learning invariant representation is vulnerable to the unseen environment. To this end, we derive novel theoretical analysis to control the unseen test environment error in the representation learning, which highlights the importance of controlling the smoothness of representation. In practice, our analysis further inspires an efficient regularization method to improve the robustness in domain generalization. Our regularization is orthogonal to and can be straightforwardly adopted in existing domain generalization algorithms for invariant representation learning. Empirical results show that our algorithm outperforms the ba
Learning from indirect supervision signals is important in real-world AI applications when, often, gold labels are missing or too costly. In this paper, we develop a unified theoretical framework for multi-class classification when the supervision is provided by a variable that contains nonzero mutual information with the gold label. The nature of this problem is determined by (i) the transition probability from the gold labels to the indirect supervision variables and (ii) the learners prior knowledge about the transition. Our framework relaxes assumptions made in the literature, and supports learning with unknown, non-invertible and instance-dependent transitions. Our theory introduces a novel concept called emph{separation}, which characterizes the learnability and generalization bounds. We also demonstrate the application of our framework via concrete novel results in a variety of learning scenarios such as learning with superset annotations and joint supervision signals.
A remarkable recent discovery in machine learning has been that deep neural networks can achieve impressive performance (in terms of both lower training error and higher generalization capacity) in the regime where they are massively over-parameterized. Consequently, over the past year, the community has devoted growing interest in analyzing optimization and generalization properties of over-parameterized networks, and several breakthrough works have led to important theoretical progress. However, the majority of existing work only applies to supervised learning scenarios and hence are limited to settings such as classification and regression. In contrast, the role of over-parameterization in the unsupervised setting has gained far less attention. In this paper, we study the gradient dynamics of two-layer over-parameterized autoencoders with ReLU activation. We make very few assumptions about the given training dataset (other than mild non-degeneracy conditions). Starting from a randomly initialized autoencoder network, we rigorously prove the linear convergence of gradient descent in two learning regimes, namely: (i) the weakly-trained regime where only the encoder is trained, and (ii) the jointly-trained regime where both the encoder and the decoder are trained. Our results indicate the considerable benefits of joint training over weak training for finding global optima, achieving a dramatic decrease in the required level of over-parameterization. We also analyze the case of weight-tied autoencoders (which is a commonly used architectural choice in practical settings) and prove that in the over-parameterized setting, training such networks from randomly initialized points leads to certain unexpected degeneracies.
Reinforcement learning has achieved great success in various applications. To learn an effective policy for the agent, it usually requires a huge amount of data by interacting with the environment, which could be computational costly and time consuming. To overcome this challenge, the framework called Reinforcement Learning with Expert Demonstrations (RLED) was proposed to exploit the supervision from expert demonstrations. Although the RLED methods can reduce the number of learning iterations, they usually assume the demonstrations are perfect, and thus may be seriously misled by the noisy demonstrations in real applications. In this paper, we propose a novel framework to adaptively learn the policy by jointly interacting with the environment and exploiting the expert demonstrations. Specifically, for each step of the demonstration trajectory, we form an instance, and define a joint loss function to simultaneously maximize the expected reward and minimize the difference between agent behaviors and demonstrations. Most importantly, by calculating the expected gain of the value function, we assign each instance with a weight to estimate its potential utility, and thus can emphasize the more helpful demonstrations while filter out noisy ones. Experimental results in various environments with multiple popular reinforcement learning algorithms show that the proposed approach can learn robustly with noisy demonstrations, and achieve higher performance in fewer iterations.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا