Do you want to publish a course? Click here

Optimization of laser stabilization via self-injection locking to WGM microresonator

139   0   0.0 ( 0 )
 Added by Nikita Kondratiev
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Self-injection locking is a dynamic phenomenon representing stabilization of the emission frequency of an oscillator with a passive cavity enabling frequency filtered coherent feedback to the oscillator cavity. For instance, self-injection locking of a semiconductor laser to a high-quality-factor (high-Q) whispering gallery mode (WGM) microresonator can result in multiple orders of magnitude reduction of the laser linewidth. The phenomenon was broadly studied in experiments, but its detailed theoretical model allowing improving the stabilization performance does not exist. In this paper we develop such a theory. We introduce five parameters identifying efficiency of the self-injection locking in an experiment, comprising back-scattering efficiency, phase delay between the laser and the high-Q cavities, frequency detuning between the laser and the high-Q cavities, the pump coupling efficiency, the optical path length between the laser and the microresonator. Our calculations show that the laser linewidth can be improved by two orders of magnitude compared with the case of not optimal self-injection locking. We present recommendations on the experimental realization of the optimal self-injection locking regime. The theoretical model provides deeper understanding of the self-injection locking and benefits multiple practical applications of self-injection locked oscillators.



rate research

Read More

Soliton microcombs constitute chip-scale optical frequency combs, and have the potential to impact a myriad of applications from frequency synthesis and telecommunications to astronomy. The requirement on external driving lasers has been significantly relaxed with the demonstration of soliton formation via self-injection locking of the pump laser to the microresonator. Yet to date, the dynamics of this process has not been fully understood. Prior models of self-injection locking were not able to explain sufficiently large detunings, crucial for soliton formation. Here we develop a theoretical model of self-injection locking to a nonlinear microresonator (nonlinear self-injection locking) for the first time and show that self- and cross-phase modulation of the clockwise and counter-clockwise light enables soliton formation. Using an integrated soliton microcomb of directly detectable 30 GHz repetition rate, consisting of a DFB laser self-injection-locked to a Si3N4 microresonator chip, we study the soliton formation dynamics via self-injection locking, as well as the repetition rate evolution, experimentally. We reveal that Kerr nonlinearity in microresonator significantly modifies locking dynamics, making laser emission frequency red detuned. We propose and implement a novel technique for measurements of the nonlinear frequency tuning curve and concurrent observation of microcomb states switching in real time.
The past decade has witnessed major advances in the development of microresonator-based frequency combs (microcombs) that are broadband optical frequency combs with repetition rates in the millimeter-wave to microwave domain. Integrated microcombs can be manufactured using wafer-scale process and have been applied in numerous applications. Most of these advances are based on the harnessing of dissipative Kerr solitons (DKS) in optical microresonators with anomalous group velocity dispersion (GVD). However, microcombs can also be generated with normal GVD using dissipative localized structures that are referred to as dark pulse, switching wave or platicon. Importantly, as most materials feature intrinsic normal GVD, the requirement of dispersion engineering is significantly relaxed for platicon generation. Therefore while DKS microcombs require particular designs and fabrication processes, platicon microcombs can be readily built using standard CMOS-compatible platforms such as thin-film (i.e. typically below 300 nm) Si3N4. Yet laser self-injection locking that has been recently used to create highly compact integrated DKS microcomb modules has not been demonstrated for platicons. Here we report the first fully integrated platicon microcomb operating at a microwave-K-band repetition rate. Using laser self-injection locking of a DFB laser edge-coupled to a Si3N4 microresonator, platicons are electrically initiated and stably maintained, enabling a compact microcomb module without any complex control. We further characterize the phase noise of the platicon repetition rate and the pumping laser. The observation of self-injection-locked platicons facilitates future wide adoption of microcombs as a build-in block in standard photonic integrated architectures via commercial foundry service.
Microresonator-based optical frequency combs have been a topic of extensive research during the last few years. Several theoretical models for the comb generation have been proposed; however, they do not comprehensively address experimental results that show a variety of independent comb generation mechanisms. Here, we present frequency-domain experiments that illuminate the transition of microcombs into phase-locked states, which show characteristics of injection locking between ensembles of comb modes. In addition, we demonstrate the existence of equidistant optical frequency combs that are phase stable but with non-deterministic phase relationships between individual comb modes.
584 - T. Yang 2013
Injection locking is a well known and commonly used method for coherent light amplification. Usually injection locking is done with a single-frequency seeding beam. In this work we show that injection locking may also be achieved in the case of multi-frequency seeding beam when slave laser provides sufficient frequency filtering. One relevant parameter turns out to be the frequency detuning between the free running slave laser and each injected frequency component. Stable selective locking to a set of three components separated of $1.2,$GHz is obtained for (positive) detuning values between zero and $1.5,$GHz depending on seeding power (ranging from 10 to 150 microwatt). This result suggests that, using distinct slave lasers for each line, a set of mutually coherent narrow-linewidth high-power radiation modes can be obtained.
We frequency stabilize the output of a miniature stimulated Brillouin scattering (SBS) laser to rubidium atoms in a microfabricated cell to realize a laser system with frequency stability at the $10^{-11}$ level over seven decades in averaging time. In addition, our system has the advantages of robustness, low cost and the potential for integration that would lead to still further miniaturization. The SBS laser operating at 1560 nm exhibits a spectral linewidth of 820 Hz, but its frequency drifts over a few MHz on the 1 hour timescale. By locking the second harmonic of the SBS laser to the Rb reference, we reduce this drift by a factor of $10^3$ to the level of a few kHz over the course of an hour. For our combined SBS and Rb laser system, we measure a frequency noise of $4times10^4$ $Hz^2/Hz$ at 10 Hz offset frequency which rapidly rolls off to a level of 0.2 $Hz^2/Hz$ at 100 kHz offset. The corresponding Allan deviation is $leq2times10^{-11}$ for averaging times spanning $10^{-4}$ to $10^3$ s. By optically dividing the signal of the laser down to microwave frequencies, we generate an RF signal at 2 GHz with phase noise at the level of -76 dBc/Hz and -140 dBc/Hz at offset frequencies of 10 Hz and 10 kHz, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا