No Arabic abstract
We consider online algorithms for the {em page migration problem} that use predictions, potentially imperfect, to improve their performance. The best known online algorithms for this problem, due to Westbrook94 and Bienkowski et al17, have competitive ratios strictly bounded away from 1. In contrast, we show that if the algorithm is given a prediction of the input sequence, then it can achieve a competitive ratio that tends to $1$ as the prediction error rate tends to $0$. Specifically, the competitive ratio is equal to $1+O(q)$, where $q$ is the prediction error rate. We also design a ``fallback option that ensures that the competitive ratio of the algorithm for {em any} input sequence is at most $O(1/q)$. Our result adds to the recent body of work that uses machine learning to improve the performance of ``classic algorithms.
The bin covering problem asks for covering a maximum number of bins with an online sequence of $n$ items of different sizes in the range $(0,1]$; a bin is said to be covered if it receives items of total size at least 1. We study this problem in the advice setting and provide tight bounds for the size of advice required to achieve optimal solutions. Moreover, we show that any algorithm with advice of size $o(log log n)$ has a competitive ratio of at most 0.5. In other words, advice of size $o(log log n)$ is useless for improving the competitive ratio of 0.5, attainable by an online algorithm without advice. This result highlights a difference between the bin covering and the bin packing problems in the advice model: for the bin packing problem, there are several algorithms with advice of constant size that outperform online algorithms without advice. Furthermore, we show that advice of size $O(log log n)$ is sufficient to achieve a competitive ratio that is arbitrarily close to $0.53bar{3}$ and hence strictly better than the best ratio $0.5$ attainable by purely online algorithms. The technicalities involved in introducing and analyzing this algorithm are quite different from the existing results for the bin packing problem and confirm the different nature of these two problems. Finally, we show that a linear number of bits of advice is necessary to achieve any competitive ratio better than 15/16 for the online bin covering problem.
The classical analysis of online algorithms, due to its worst-case nature, can be quite pessimistic when the input instance at hand is far from worst-case. Often this is not an issue with machine learning approaches, which shine in exploiting patterns in past inputs in order to predict the future. However, such predictions, although usually accurate, can be arbitrarily poor. Inspired by a recent line of work, we augment three well-known online settings with machine learned predictions about the future, and develop algorithms that take them into account. In particular, we study the following online selection problems: (i) the classical secretary problem, (ii) online bipartite matching and (iii) the graphic matroid secretary problem. Our algorithms still come with a worst-case performance guarantee in the case that predictions are subpar while obtaining an improved competitive ratio (over the best-known classical online algorithm for each problem) when the predictions are sufficiently accurate. For each algorithm, we establish a trade-off between the competitive ratios obtained in the two respective cases.
In the model of online caching with machine learned advice, introduced by Lykouris and Vassilvitskii, the goal is to solve the caching problem with an online algorithm that has access to next-arrival predictions: when each input element arrives, the algorithm is given a prediction of the next time when the element will reappear. The traditional model for online caching suffers from an $Omega(log k)$ competitive ratio lower bound (on a cache of size $k$). In contrast, the augmented model admits algorithms which beat this lower bound when the predictions have low error, and asymptotically match the lower bound when the predictions have high error, even if the algorithms are oblivious to the prediction error. In particular, Lykouris and Vassilvitskii showed that there is a prediction-augmented caching algorithm with a competitive ratio of $O(1+min(sqrt{eta/OPT}, log k))$ when the overall $ell_1$ prediction error is bounded by $eta$, and $OPT$ is the cost of the optimal offline algorithm. The dependence on $k$ in the competitive ratio is optimal, but the dependence on $eta/OPT$ may be far from optimal. In this work, we make progress towards closing this gap. Our contributions are twofold. First, we provide an improved algorithm with a competitive ratio of $O(1 + min((eta/OPT)/k, 1) log k)$. Second, we provide a lower bound of $Omega(log min((eta/OPT)/(k log k), k))$.
This paper considers a variant of the online paging problem, where the online algorithm has access to multiple predictors, each producing a sequence of predictions for the page arrival times. The predictors may have occasional prediction errors and it is assumed that at least one of them makes a sublinear number of prediction errors in total. Our main result states that this assumption suffices for the design of a randomized online algorithm whose time-average regret with respect to the optimal offline algorithm tends to zero as the time tends to infinity. This holds (with different regret bounds) for both the full information access model, where in each round, the online algorithm gets the predictions of all predictors, and the bandit access model, where in each round, the online algorithm queries a single predictor. While online algorithms that exploit inaccurate predictions have been a topic of growing interest in the last few years, to the best of our knowledge, this is the first paper that studies this topic in the context of multiple predictors for an online problem with unbounded request sequences. Moreover, to the best of our knowledge, this is also the first paper that aims for (and achieves) online algorithms with a vanishing regret for a classic online problem under reasonable assumptions.
The priority model of greedy-like algorithms was introduced by Borodin, Nielsen, and Rackoff in 2002. We augment this model by allowing priority algorithms to have access to advice, i.e., side information precomputed by an all-powerful oracle. Obtaining lower bounds in the priority model without advice can be challenging and may involve intricate adversary arguments. Since the priority model with advice is even more powerful, obtaining lower bounds presents additional difficulties. We sidestep these difficulties by developing a general framework of reductions which makes lower bound proofs relatively straightforward and routine. We start by introducing the Pair Matching problem, for which we are able to prove strong lower bounds in the priority model with advice. We develop a template for constructing a reduction from Pair Matching to other problems in the priority model with advice -- this part is technically challenging since the reduction needs to define a valid priority function for Pair Matching while respecting the priority function for the other problem. Finally, we apply the template to obtain lower bounds for a number of standard discrete optimization problems.