Do you want to publish a course? Click here

Online Bin Covering with Advice

72   0   0.0 ( 0 )
 Added by Joan Boyar
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The bin covering problem asks for covering a maximum number of bins with an online sequence of $n$ items of different sizes in the range $(0,1]$; a bin is said to be covered if it receives items of total size at least 1. We study this problem in the advice setting and provide tight bounds for the size of advice required to achieve optimal solutions. Moreover, we show that any algorithm with advice of size $o(log log n)$ has a competitive ratio of at most 0.5. In other words, advice of size $o(log log n)$ is useless for improving the competitive ratio of 0.5, attainable by an online algorithm without advice. This result highlights a difference between the bin covering and the bin packing problems in the advice model: for the bin packing problem, there are several algorithms with advice of constant size that outperform online algorithms without advice. Furthermore, we show that advice of size $O(log log n)$ is sufficient to achieve a competitive ratio that is arbitrarily close to $0.53bar{3}$ and hence strictly better than the best ratio $0.5$ attainable by purely online algorithms. The technicalities involved in introducing and analyzing this algorithm are quite different from the existing results for the bin packing problem and confirm the different nature of these two problems. Finally, we show that a linear number of bits of advice is necessary to achieve any competitive ratio better than 15/16 for the online bin covering problem.



rate research

Read More

We consider online algorithms for the {em page migration problem} that use predictions, potentially imperfect, to improve their performance. The best known online algorithms for this problem, due to Westbrook94 and Bienkowski et al17, have competitive ratios strictly bounded away from 1. In contrast, we show that if the algorithm is given a prediction of the input sequence, then it can achieve a competitive ratio that tends to $1$ as the prediction error rate tends to $0$. Specifically, the competitive ratio is equal to $1+O(q)$, where $q$ is the prediction error rate. We also design a ``fallback option that ensures that the competitive ratio of the algorithm for {em any} input sequence is at most $O(1/q)$. Our result adds to the recent body of work that uses machine learning to improve the performance of ``classic algorithms.
The classical analysis of online algorithms, due to its worst-case nature, can be quite pessimistic when the input instance at hand is far from worst-case. Often this is not an issue with machine learning approaches, which shine in exploiting patterns in past inputs in order to predict the future. However, such predictions, although usually accurate, can be arbitrarily poor. Inspired by a recent line of work, we augment three well-known online settings with machine learned predictions about the future, and develop algorithms that take them into account. In particular, we study the following online selection problems: (i) the classical secretary problem, (ii) online bipartite matching and (iii) the graphic matroid secretary problem. Our algorithms still come with a worst-case performance guarantee in the case that predictions are subpar while obtaining an improved competitive ratio (over the best-known classical online algorithm for each problem) when the predictions are sufficiently accurate. For each algorithm, we establish a trade-off between the competitive ratios obtained in the two respective cases.
164 - Dhruv Rohatgi 2019
In the model of online caching with machine learned advice, introduced by Lykouris and Vassilvitskii, the goal is to solve the caching problem with an online algorithm that has access to next-arrival predictions: when each input element arrives, the algorithm is given a prediction of the next time when the element will reappear. The traditional model for online caching suffers from an $Omega(log k)$ competitive ratio lower bound (on a cache of size $k$). In contrast, the augmented model admits algorithms which beat this lower bound when the predictions have low error, and asymptotically match the lower bound when the predictions have high error, even if the algorithms are oblivious to the prediction error. In particular, Lykouris and Vassilvitskii showed that there is a prediction-augmented caching algorithm with a competitive ratio of $O(1+min(sqrt{eta/OPT}, log k))$ when the overall $ell_1$ prediction error is bounded by $eta$, and $OPT$ is the cost of the optimal offline algorithm. The dependence on $k$ in the competitive ratio is optimal, but the dependence on $eta/OPT$ may be far from optimal. In this work, we make progress towards closing this gap. Our contributions are twofold. First, we provide an improved algorithm with a competitive ratio of $O(1 + min((eta/OPT)/k, 1) log k)$. Second, we provide a lower bound of $Omega(log min((eta/OPT)/(k log k), k))$.
We study emph{parallel} online algorithms: For some fixed integer $k$, a collective of $k$ parallel processes that perform online decisions on the same sequence of events forms a $k$-emph{copy algorithm}. For any given time and input sequence, the overall performance is determined by the best of the $k$ individual total results. Problems of this type have been considered for online makespan minimization; they are also related to optimization with emph{advice} on future events, i.e., a number of bits available in advance. We develop textsc{Predictive Harmonic}$_3$ (PH3), a relatively simple family of $k$-copy algorithms for the online Bin Packing Problem, whose joint competitive factor converges to 1.5 for increasing $k$. In particular, we show that $k=6$ suffices to guarantee a factor of $1.5714$ for PH3, which is better than $1.57829$, the performance of the best known 1-copy algorithm textsc{Advanced Harmonic}, while $k=11$ suffices to achieve a factor of $1.5406$, beating the known lower bound of $1.54278$ for a single online algorithm. In the context of online optimization with advice, our approach implies that 4 bits suffice to achieve a factor better than this bound of $1.54278$, which is considerably less than the previous bound of 15 bits.
Finding cohesive subgraphs in a network is a well-known problem in graph theory. Several alternative formulations of cohesive subgraph have been proposed, a notable example being $s$-club, which is a subgraph where each vertex is at distance at most $s$ to the others. Here we consider the problem of covering a given graph with the minimum number of $s$-clubs. We study the computational and approximation complexity of this problem, when $s$ is equal to 2 or 3. First, we show that deciding if there exists a cover of a graph with three $2$-clubs is NP-complete, and that deciding if there exists a cover of a graph with two $3$-clubs is NP-complete. Then, we consider the approximation complexity of covering a graph with the minimum number of $2$-clubs and $3$-clubs. We show that, given a graph $G=(V,E)$ to be covered, covering $G$ with the minimum number of $2$-clubs is not approximable within factor $O(|V|^{1/2 -varepsilon})$, for any $varepsilon>0$, and covering $G$ with the minimum number of $3$-clubs is not approximable within factor $O(|V|^{1 -varepsilon})$, for any $varepsilon>0$. On the positive side, we give an approximation algorithm of factor $2|V|^{1/2}log^{3/2} |V|$ for covering a graph with the minimum number of $2$-clubs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا