Do you want to publish a course? Click here

Evaluation of Similarity-based Explanations

68   0   0.0 ( 0 )
 Added by Kazuaki Hanawa
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Explaining the predictions made by complex machine learning models helps users to understand and accept the predicted outputs with confidence. One promising way is to use similarity-based explanation that provides similar instances as evidence to support model predictions. Several relevance metrics are used for this purpose. In this study, we investigated relevance metrics that can provide reasonable explanations to users. Specifically, we adopted three tests to evaluate whether the relevance metrics satisfy the minimal requirements for similarity-based explanation. Our experiments revealed that the cosine similarity of the gradients of the loss performs best, which would be a recommended choice in practice. In addition, we showed that some metrics perform poorly in our tests and analyzed the reasons of their failure. We expect our insights to help practitioners in selecting appropriate relevance metrics and also aid further researches for designing better relevance metrics for explanations.

rate research

Read More

Human explanations of high-level decisions are often expressed in terms of key concepts the decisions are based on. In this paper, we study such concept-based explainability for Deep Neural Networks (DNNs). First, we define the notion of completeness, which quantifies how sufficient a particular set of concepts is in explaining a models prediction behavior based on the assumption that complete concept scores are sufficient statistics of the model prediction. Next, we propose a concept discovery method that aims to infer a complete set of concepts that are additionally encouraged to be interpretable, which addresses the limitations of existing methods on concept explanations. To define an importance score for each discovered concept, we adapt game-theoretic notions to aggregate over sets and propose ConceptSHAP. Via proposed metrics and user studies, on a synthetic dataset with apriori-known concept explanations, as well as on real-world image and language datasets, we validate the effectiveness of our method in finding concepts that are both complete in explaining the decisions and interpretable. (The code is released at https://github.com/chihkuanyeh/concept_exp)
Recent advances in meta-learning has led to remarkable performances on several few-shot learning benchmarks. However, such success often ignores the similarity between training and testing tasks, resulting in a potential bias evaluation. We, therefore, propose a generative approach based on a variant of Latent Dirichlet Allocation to analyse task similarity to optimise and better understand the performance of meta-learning. We demonstrate that the proposed method can provide an insightful evaluation for meta-learning algorithms on two few-shot classification benchmarks that matches common intuition: the more similar the higher performance. Based on this similarity measure, we propose a task-selection strategy for meta-learning and show that it can produce more accurate classification results than methods that randomly select training tasks.
Privacy and transparency are two key foundations of trustworthy machine learning. Model explanations offer insights into a models decisions on input data, whereas privacy is primarily concerned with protecting information about the training data. We analyze connections between model explanations and the leakage of sensitive information about the models training set. We investigate the privacy risks of feature-based model explanations using membership inference attacks: quantifying how much model predictions plus their explanations leak information about the presence of a datapoint in the training set of a model. We extensively evaluate membership inference attacks based on feature-based model explanations, over a variety of datasets. We show that backpropagation-based explanations can leak a significant amount of information about individual training datapoints. This is because they reveal statistical information about the decision boundaries of the model about an input, which can reveal its membership. We also empirically investigate the trade-off between privacy and explanation quality, by studying the perturbation-based model explanations.
Black-box machine learning models are used in critical decision-making domains, giving rise to several calls for more algorithmic transparency. The drawback is that model explanations can leak information about the training data and the explanation data used to generate them, thus undermining data privacy. To address this issue, we propose differentially private algorithms to construct feature-based model explanations. We design an adaptive differentially private gradient descent algorithm, that finds the minimal privacy budget required to produce accurate explanations. It reduces the overall privacy loss on explanation data, by adaptively reusing past differentially private explanations. It also amplifies the privacy guarantees with respect to the training data. We evaluate the implications of differentially private models and our privacy mechanisms on the quality of model explanations.
A recent proposal of data dependent similarity called Isolation Kernel/Similarity has enabled SVM to produce better classification accuracy. We identify shortcomings of using a tree method to implement Isolation Similarity; and propose a nearest neighbour method instead. We formally prove the characteristic of Isolation Similarity with the use of the proposed method. The impact of Isolation Similarity on density-based clustering is studied here. We show for the first time that the clustering performance of the classic density-based clustering algorithm DBSCAN can be significantly uplifted to surpass that of the recent density-peak clustering algorithm DP. This is achieved by simply replacing the distance measure with the proposed nearest-neighbour-induced Isolation Similarity in DBSCAN, leaving the rest of the procedure unchanged. A new type of clusters called mass-connected clusters is formally defined. We show that DBSCAN, which detects density-connected clusters, becomes one which detects mass-connected clusters, when the distance measure is replaced with the proposed similarity. We also provide the condition under which mass-connected clusters can be detected, while density-connected clusters cannot.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا