Do you want to publish a course? Click here

On the Privacy Risks of Model Explanations

82   0   0.0 ( 0 )
 Added by Martin Strobel
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Privacy and transparency are two key foundations of trustworthy machine learning. Model explanations offer insights into a models decisions on input data, whereas privacy is primarily concerned with protecting information about the training data. We analyze connections between model explanations and the leakage of sensitive information about the models training set. We investigate the privacy risks of feature-based model explanations using membership inference attacks: quantifying how much model predictions plus their explanations leak information about the presence of a datapoint in the training set of a model. We extensively evaluate membership inference attacks based on feature-based model explanations, over a variety of datasets. We show that backpropagation-based explanations can leak a significant amount of information about individual training datapoints. This is because they reveal statistical information about the decision boundaries of the model about an input, which can reveal its membership. We also empirically investigate the trade-off between privacy and explanation quality, by studying the perturbation-based model explanations.



rate research

Read More

Black-box machine learning models are used in critical decision-making domains, giving rise to several calls for more algorithmic transparency. The drawback is that model explanations can leak information about the training data and the explanation data used to generate them, thus undermining data privacy. To address this issue, we propose differentially private algorithms to construct feature-based model explanations. We design an adaptive differentially private gradient descent algorithm, that finds the minimal privacy budget required to produce accurate explanations. It reduces the overall privacy loss on explanation data, by adaptively reusing past differentially private explanations. It also amplifies the privacy guarantees with respect to the training data. We evaluate the implications of differentially private models and our privacy mechanisms on the quality of model explanations.
Complex black-box machine learning models are regularly used in critical decision-making domains. This has given rise to several calls for algorithmic explainability. Many explanation algorithms proposed in literature assign importance to each feature individually. However, such explanations fail to capture the joint effects of sets of features. Indeed, few works so far formally analyze high-dimensional model explanations. In this paper, we propose a novel high dimension model explanation method that captures the joint effect of feature subsets. We propose a new axiomatization for a generalization of the Banzhaf index; our method can also be thought of as an approximation of a black-box model by a higher-order polynomial. In other words, this work justifies the use of the generalized Banzhaf index as a model explanation by showing that it uniquely satisfies a set of natural desiderata and that it is the optimal local approximation of a black-box model. Our empirical evaluation of our measure highlights how it manages to capture desirable behavior, whereas other measures that do not satisfy our axioms behave in an unpredictable manner.
33 - Xinlei He , Yang Zhang 2021
Data is the key factor to drive the development of machine learning (ML) during the past decade. However, high-quality data, in particular labeled data, is often hard and expensive to collect. To leverage large-scale unlabeled data, self-supervised learning, represented by contrastive learning, is introduced. The objective of contrastive learning is to map different views derived from a training sample (e.g., through data augmentation) closer in their representation space, while different views derived from different samples more distant. In this way, a contrastive model learns to generate informative representations for data samples, which are then used to perform downstream ML tasks. Recent research has shown that machine learning models are vulnerable to various privacy attacks. However, most of the current efforts concentrate on models trained with supervised learning. Meanwhile, data samples informative representations learned with contrastive learning may cause severe privacy risks as well. In this paper, we perform the first privacy analysis of contrastive learning through the lens of membership inference and attribute inference. Our experimental results show that contrastive models are less vulnerable to membership inference attacks but more vulnerable to attribute inference attacks compared to supervised models. The former is due to the fact that contrastive models are less prone to overfitting, while the latter is caused by contrastive models capability of representing data samples expressively. To remedy this situation, we propose the first privacy-preserving contrastive learning mechanism, namely Talos, relying on adversarial training. Empirical results show that Talos can successfully mitigate attribute inference risks for contrastive models while maintaining their membership privacy and model utility.
104 - Zhiqi Bu , Hua Wang , Qi Long 2021
In deep learning with differential privacy (DP), the neural network achieves the privacy usually at the cost of slower convergence (and thus lower performance) than its non-private counterpart. This work gives the first convergence analysis of the DP deep learning, through the lens of training dynamics and the neural tangent kernel (NTK). Our convergence theory successfully characterizes the effects of two key components in the DP training: the per-sample clipping (flat or layerwise) and the noise addition. Our analysis not only initiates a general principled framework to understand the DP deep learning with any network architecture and loss function, but also motivates a new clipping method -- the global clipping, that significantly improves the convergence while preserving the same privacy guarantee as the existing local clipping. In terms of theoretical results, we establish the precise connection between the per-sample clipping and NTK matrix. We show that in the gradient flow, i.e., with infinitesimal learning rate, the noise level of DP optimizers does not affect the convergence. We prove that DP gradient descent (GD) with global clipping guarantees the monotone convergence to zero loss, which can be violated by the existing DP-GD with local clipping. Notably, our analysis framework easily extends to other optimizers, e.g., DP-Adam. Empirically speaking, DP optimizers equipped with global clipping perform strongly on a wide range of classification and regression tasks. In particular, our global clipping is surprisingly effective at learning calibrated classifiers, in contrast to the existing DP classifiers which are oftentimes over-confident and unreliable. Implementation-wise, the new clipping can be realized by adding one line of code into the Opacus library.
LDP (Local Differential Privacy) has recently attracted much attention as a metric of data privacy that prevents the inference of personal data from obfuscated data in the local model. However, there are scenarios in which the adversary wants to perform re-identification attacks to link the obfuscated data to users in this model. LDP can cause excessive obfuscation and destroy the utility in these scenarios because it is not designed to directly prevent re-identification. In this paper, we propose a measure of re-identification risks, which we call PIE (Personal Information Entropy). The PIE is designed so that it directly prevents re-identification attacks in the local model. It lower-bounds the lowest possible re-identification error probability (i.e., Bayes error probability) of the adversary. We analyze the relation between LDP and the PIE, and analyze the PIE and utility in distribution estimation for two obfuscation mechanisms providing LDP. Through experiments, we show that when we consider re-identification as a privacy risk, LDP can cause excessive obfuscation and destroy the utility. Then we show that the PIE can be used to guarantee low re-identification risks for the local obfuscation mechanisms while keeping high utility.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا