Do you want to publish a course? Click here

Assessing the Readiness of Numerical Relativity for LISA and 3G Detectors

57   0   0.0 ( 0 )
 Added by Deborah Ferguson
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Future detectors such as LISA promise signal-to-noise ratios potentially in the thousands and data containing simultaneous signals. Accurate numerical relativity waveforms will be essential to maximize the science return. A question of interest to the broad gravitational wave community is: Are the numerical relativity codes ready to face this challenge? Towards answering this question, we provide a new criteria to identify the minimum resolution a simulation must have as a function of signal-to-noise ratio in order for the numerical relativity waveform to be indistinguishable from a true signal. This criteria can be applied to any finite-differencing numerical relativity code with multiple simulations of differing resolutions for the desired binary parameters and waveform length. We apply this criteria to binary systems of interest with the fourth-order MAYA code to obtain the first estimate of the minimum resolution a simulation must have to be prepared for next generation detectors.



rate research

Read More

Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave signals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Eintein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.
261 - M. C. Babiuc , S. Husa , D. Alic 2008
We discuss results that have been obtained from the implementation of the initial round of testbeds for numerical relativity which was proposed in the first paper of the Apples with Apples Alliance. We present benchmark results for various codes which provide templates for analyzing the testbeds and to draw conclusions about various features of the codes. This allows us to sharpen the initial test specifications, design a new test and add theoretical insight.
We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detection, in order-reduced dynamical Chern-Simons gravity, a theory with motivations in string theory and loop quantum gravity. We present results for the leading-order corrections to the merger and ringdown waveforms, as well as the ringdown quasi-normal mode spectrum. We estimate that such corrections may be discriminated in detections with signal to noise ratio $gtrsim 180-240$, with the precise value depending on the dimension of the GR waveform family used in data analysis.
159 - P. Ajith , M. Boyle , D. A. Brown 2011
This document proposes data formats to exchange numerical relativity results, in particular gravitational waveforms. The primary goal is to further the interaction between gravitational-wave source modeling groups and the gravitational-wave data-analysis community. We present a simple and extendable format which is applicable to various kinds of gravitational wave sources including binaries of compact objects and systems undergoing gravitational collapse, but is nevertheless sufficiently general to be useful for other purposes.
Understanding the Bondi-Metzner-Sachs (BMS) frame of the gravitational waves produced by numerical relativity is crucial for ensuring that analyses on such waveforms are performed properly. It is also important that models are built from waveforms in the same BMS frame. Up until now, however, the BMS frame of numerical waveforms has not been thoroughly examined, largely because the necessary tools have not existed. In this paper, we show how to analyze and map to a suitable BMS frame for numerical waveforms calculated with the Spectral Einstein Code (SpEC). However, the methods and tools that we present are general and can be applied to any numerical waveforms. We present an extensive study of 13 binary black hole systems that broadly span parameter space. From these simulations, we extract the strain and also the Weyl scalars using both SpECTREs Cauchy-characteristic extraction module and also the standard extrapolation procedure with a displacement memory correction applied during postprocessing. First, we show that the current center-of-mass correction used to map these waveforms to the center-of-mass frame is not as effective as previously thought. Consequently, we also develop an improved correction that utilizes asymptotic Poincare charges instead of a Newtonian center-of-mass trajectory. Next, we map our waveforms to the post-Newtonian (PN) BMS frame using a PN strain waveform. This helps us find the unique BMS transformation that minimizes the $L^{2}$ norm of the difference between the numerical and PN strain waveforms during the early inspiral phase. We find that once the waveforms are mapped to the PN BMS frame, they can be hybridized with a PN strain waveform much more effectively than if one used any of the previous alignment schemes, which only utilize the Poincare transformations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا