Do you want to publish a course? Click here

AutoPrivacy: Automated Layer-wise Parameter Selection for Secure Neural Network Inference

98   0   0.0 ( 0 )
 Added by Lei Jiang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Hybrid Privacy-Preserving Neural Network (HPPNN) implementing linear layers by Homomorphic Encryption (HE) and nonlinear layers by Garbled Circuit (GC) is one of the most promising secure solutions to emerging Machine Learning as a Service (MLaaS). Unfortunately, a HPPNN suffers from long inference latency, e.g., $sim100$ seconds per image, which makes MLaaS unsatisfactory. Because HE-based linear layers of a HPPNN cost $93%$ inference latency, it is critical to select a set of HE parameters to minimize computational overhead of linear layers. Prior HPPNNs over-pessimistically select huge HE parameters to maintain large noise budgets, since they use the same set of HE parameters for an entire network and ignore the error tolerance capability of a network. In this paper, for fast and accurate secure neural network inference, we propose an automated layer-wise parameter selector, AutoPrivacy, that leverages deep reinforcement learning to automatically determine a set of HE parameters for each linear layer in a HPPNN. The learning-based HE parameter selection policy outperforms conventional rule-based HE parameter selection policy. Compared to prior HPPNNs, AutoPrivacy-optimized HPPNNs reduce inference latency by $53%sim70%$ with negligible loss of accuracy.



rate research

Read More

In recent years, gradient boosted decision tree learning has proven to be an effective method of training robust models. Moreover, collaborative learning among multiple parties has the potential to greatly benefit all parties involved, but organizations have also encountered obstacles in sharing sensitive data due to business, regulatory, and liability concerns. We propose Secure XGBoost, a privacy-preserving system that enables multiparty training and inference of XGBoost models. Secure XGBoost protects the privacy of each partys data as well as the integrity of the computation with the help of hardware enclaves. Crucially, Secure XGBoost augments the security of the enclaves using novel data-oblivious algorithms that prevent access side-channel attacks on enclaves induced via access pattern leakage.
Oblivious inference enables the cloud to provide neural network inference-as-a-service (NN-IaaS), whilst neither disclosing the client data nor revealing the servers model. However, the privacy guarantee under oblivious inference usually comes with a heavy cost of efficiency and accuracy. We propose Popcorn, a concise oblivious inference framework entirely built on the Paillier homomorphic encryption scheme. We design a suite of novel protocols to compute non-linear activation and max-pooling layers. We leverage neural network compression techniques (i.e., neural weights pruning and quantization) to accelerate the inference computation. To implement the Popcorn framework, we only need to replace algebraic operations of existing networks with their corresponding Paillier homomorphic operations, which is extremely friendly for engineering development. We first conduct the performance evaluation and comparison based on the MNIST and CIFAR-10 classification tasks. Compared with existing solutions, Popcorn brings a significant communication overhead deduction, with a moderate runtime increase. Then, we benchmark the performance of oblivious inference on ImageNet. To our best knowledge, this is the first report based on a commercial-level dataset, taking a step towards the deployment to production.
In this work, we study how to securely evaluate the value of trading data without requiring a trusted third party. We focus on the important machine learning task of classification. This leads us to propose a provably secure four-round protocol that computes the value of the data to be traded without revealing the data to the potential acquirer. The theoretical results demonstrate a number of important properties of the proposed protocol. In particular, we prove the security of the proposed protocol in the honest-but-curious adversary model.
We introduce S++, a simple, robust, and deployable framework for training a neural network (NN) using private data from multiple sources, using secret-shared secure function evaluation. In short, consider a virtual third party to whom every data-holder sends their inputs, and which computes the neural network: in our case, this virtual third party is actually a set of servers which individually learn nothing, even with a malicious (but non-colluding) adversary. Previous work in this area has been limited to just one specific activation function: ReLU, rendering the approach impractical for many use-cases. For the first time, we provide fast and verifiable protocols for all common activation functions and optimize them for running in a secret-shared manner. The ability to quickly, verifiably, and robustly compute exponentiation, softmax, sigmoid, etc., allows us to use previously written NNs without modification, vastly reducing developer effort and complexity of code. In recent times, ReLU has been found to converge much faster and be more computationally efficient as compared to non-linear functions like sigmoid or tanh. However, we argue that it would be remiss not to extend the mechanism to non-linear functions such as the logistic sigmoid, tanh, and softmax that are fundamental due to their ability to express outputs as probabilities and their universal approximation property. Their contribution in RNNs and a few recent advancements also makes them more relevant.
Convolutional neural networks have gained a remarkable success in computer vision. However, most usable network architectures are hand-crafted and usually require expertise and elaborate design. In this paper, we provide a block-wise network generation pipeline called BlockQNN which automatically builds high-performance networks using the Q-Learning paradigm with epsilon-greedy exploration strategy. The optimal network block is constructed by the learning agent which is trained to choose component layers sequentially. We stack the block to construct the whole auto-generated network. To accelerate the generation process, we also propose a distributed asynchronous framework and an early stop strategy. The block-wise generation brings unique advantages: (1) it yields state-of-the-art results in comparison to the hand-crafted networks on image classification, particularly, the best network generated by BlockQNN achieves 2.35% top-1 error rate on CIFAR-10. (2) it offers tremendous reduction of the search space in designing networks, spending only 3 days with 32 GPUs. A faster version can yield a comparable result with only 1 GPU in 20 hours. (3) it has strong generalizability in that the network built on CIFAR also performs well on the larger-scale dataset. The best network achieves very competitive accuracy of 82.0% top-1 and 96.0% top-5 on ImageNet.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا