Do you want to publish a course? Click here

Detecting Abrupt Changes in High-Dimensional Self-Exciting Poisson Processes

117   0   0.0 ( 0 )
 Added by Yi Yu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

High-dimensional self-exciting point processes have been widely used in many application areas to model discrete event data in which past and current events affect the likelihood of future events. In this paper, we are concerned with detecting abrupt changes of the coefficient matrices in discrete-time high-dimensional self-exciting Poisson processes, which have yet to be studied in the existing literature due to both theoretical and computational challenges rooted in the non-stationary and high-dimensional nature of the underlying process. We propose a penalized dynamic programming approach which is supported by a theoretical rate analysis and numerical evidence.



rate research

Read More

148 - Z. Bai , D. Jiang , J. Yao 2012
For a multivariate linear model, Wilks likelihood ratio test (LRT) constitutes one of the cornerstone tools. However, the computation of its quantiles under the null or the alternative requires complex analytic approximations and more importantly, these distributional approximations are feasible only for moderate dimension of the dependent variable, say $ple 20$. On the other hand, assuming that the data dimension $p$ as well as the number $q$ of regression variables are fixed while the sample size $n$ grows, several asymptotic approximations are proposed in the literature for Wilks $bLa$ including the widely used chi-square approximation. In this paper, we consider necessary modifications to Wilks test in a high-dimensional context, specifically assuming a high data dimension $p$ and a large sample size $n$. Based on recent random matrix theory, the correction we propose to Wilks test is asymptotically Gaussian under the null and simulations demonstrate that the corrected LRT has very satisfactory size and power, surely in the large $p$ and large $n$ context, but also for moderately large data dimensions like $p=30$ or $p=50$. As a byproduct, we give a reason explaining why the standard chi-square approximation fails for high-dimensional data. We also introduce a new procedure for the classical multiple sample significance test in MANOVA which is valid for high-dimensional data.
Structural breaks have been commonly seen in applications. Specifically for detection of change points in time, research gap still remains on the setting in ultra high dimension, where the covariates may bear spurious correlations. In this paper, we propose a two-stage approach to detect change points in ultra high dimension, by firstly proposing the dynamic titled current correlation screening method to reduce the input dimension, and then detecting possible change points in the framework of group variable selection. Not only the spurious correlation between ultra-high dimensional covariates is taken into consideration in variable screening, but non-convex penalties are studied in change point detection in the ultra high dimension. Asymptotic properties are derived to guarantee the asymptotic consistency of the selection procedure, and the numerical investigations show the promising performance of the proposed approach.
Labeling patients in electronic health records with respect to their statuses of having a disease or condition, i.e. case or control statuses, has increasingly relied on prediction models using high-dimensional variables derived from structured and unstructured electronic health record data. A major hurdle currently is a lack of valid statistical inference methods for the case probability. In this paper, considering high-dimensional sparse logistic regression models for prediction, we propose a novel bias-corrected estimator for the case probability through the development of linearization and variance enhancement techniques. We establish asymptotic normality of the proposed estimator for any loading vector in high dimensions. We construct a confidence interval for the case probability and propose a hypothesis testing procedure for patient case-control labelling. We demonstrate the proposed method via extensive simulation studies and application to real-world electronic health record data.
We propose a new method for changepoint estimation in partially-observed, high-dimensional time series that undergo a simultaneous change in mean in a sparse subset of coordinates. Our first methodological contribution is to introduce a MissCUSUM transformation (a generalisation of the popular Cumulative Sum statistics), that captures the interaction between the signal strength and the level of missingness in each coordinate. In order to borrow strength across the coordinates, we propose to project these MissCUSUM statistics along a direction found as the solution to a penalised optimisation problem tailored to the specific sparsity structure. The changepoint can then be estimated as the location of the peak of the absolute value of the projected univariate series. In a model that allows different missingness probabilities in different component series, we identify that the key interaction between the missingness and the signal is a weighted sum of squares of the signal change in each coordinate, with weights given by the observation probabilities. More specifically, we prove that the angle between the estimated and oracle projection directions, as well as the changepoint location error, are controlled with high probability by the sum of two terms, both involving this weighted sum of squares, and representing the error incurred due to noise and the error due to missingness respectively. A lower bound confirms that our changepoint estimator, which we call MissInspect, is optimal up to a logarithmic factor. The striking effectiveness of the MissInspect methodology is further demonstrated both on simulated data, and on an oceanographic data set covering the Neogene period.
Variable-intensity astronomical sources are the result of complex and often extreme physical processes. Abrupt changes in source intensity are typically accompanied by equally sudden spectral shifts, i.e., sudden changes in the wavelength distribution of the emission. This article develops a method for modeling photon counts collected from observation of such sources. We embed change points into a marked Poisson process, where photon wavelengths are regarded as marks and both the Poisson intensity parameter and the distribution of the marks are allowed to change. To the best of our knowledge this is the first effort to embed change points into a marked Poisson process. Between the change points, the spectrum is modeled non-parametrically using a mixture of a smooth radial basis expansion and a number of local deviations from the smooth term representing spectral emission lines. Because the model is over parameterized we employ an $ell_1$ penalty. The tuning parameter in the penalty and the number of change points are determined via the minimum description length principle. Our method is validated via a series of simulation studies and its practical utility is illustrated in the analysis of the ultra-fast rotating yellow giant star known as FK Com.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا