We give a short essentially self-contained treatment of the fundamental analytic and algebraic features of regularity structures and its applications to the study of singular stochastic PDEs.
We develop in this note the tools of regularity structures to deal with singular stochastic PDEs that involve non-translation invariant differential operators. We describe in particular the renormalised equation for a very large class of spacetime dependent renormalization schemes.
We prove a general equivalence statement between the notions of models and modelled distributions over a regularity structure, and paracontrolled systems indexed by the regularity structure. This takes in particular the form of a parametrisation of the set of models over a regularity structure by the set of reference functions used in the paracontrolled representation of these objects. A number of consequences are emphasized. The construction of a modelled distribution from a paracontrolled system is explicit, and takes a particularly simple form in the case of the regularity structures introduced by Bruned, Hairer and Zambotti for the study of singular stochastic partial differential equations.
We develop further in this work the high order paracontrolled calculus setting to deal with the analytic part of the study of quasilinear singular PDEs. A number of continuity results for some operators are proved for that purpose. Unlike the regularity structures approach of the subject by Gerencser and Hairer, and Otto, Sauer, Smith and Weber, or Furlan and Gubinelli study of the two dimensional quasilinear parabolic Anderson model equation, we do not use parametrised families of models or paraproducts to set the scene. We use instead infinite dimensional paracontrolled structures that we introduce here.
This paper is concerned with higher Holder regularity for viscosity solutions to non-translation invariant second order integro-PDEs, compared to cite{mou2018}. We first obtain $C^{1,alpha}$ regularity estimates for fully nonlinear integro-PDEs. We then prove the Schauder estimates for solutions if the equation is convex.
We start in this work the study of the relation between the theory of regularity structures and paracontrolled calculus. We give a paracontrolled representation of the reconstruction operator and provide a natural parametrization of the space of admissible models.