No Arabic abstract
We develop further in this work the high order paracontrolled calculus setting to deal with the analytic part of the study of quasilinear singular PDEs. A number of continuity results for some operators are proved for that purpose. Unlike the regularity structures approach of the subject by Gerencser and Hairer, and Otto, Sauer, Smith and Weber, or Furlan and Gubinelli study of the two dimensional quasilinear parabolic Anderson model equation, we do not use parametrised families of models or paraproducts to set the scene. We use instead infinite dimensional paracontrolled structures that we introduce here.
We develop in this note the tools of regularity structures to deal with singular stochastic PDEs that involve non-translation invariant differential operators. We describe in particular the renormalised equation for a very large class of spacetime dependent renormalization schemes.
We start in this work the study of the relation between the theory of regularity structures and paracontrolled calculus. We give a paracontrolled representation of the reconstruction operator and provide a natural parametrization of the space of admissible models.
We prove a general equivalence statement between the notions of models and modelled distributions over a regularity structure, and paracontrolled systems indexed by the regularity structure. This takes in particular the form of a parametrisation of the set of models over a regularity structure by the set of reference functions used in the paracontrolled representation of these objects. A number of consequences are emphasized. The construction of a modelled distribution from a paracontrolled system is explicit, and takes a particularly simple form in the case of the regularity structures introduced by Bruned, Hairer and Zambotti for the study of singular stochastic partial differential equations.
The existence of positive weak solutions to a singular quasilinear elliptic system in the whole space is established via suitable a priori estimates and Schauders fixed point theorem.
This paper continues the development of regularity results for quasilinear measure data problems begin{align*} begin{cases} -mathrm{div}(A(x, abla u)) &= mu quad text{in} Omega, quad quad qquad u &=0 quad text{on} partial Omega, end{cases} end{align*} in Lorentz and Lorentz-Morrey spaces, where $Omega subset mathbb{R}^n$ ($n ge 2$), $mu$ is a finite Radon measure on $Omega$, and $A$ is a monotone Caratheodory vector valued operator acting between $W^{1,p}_0(Omega)$ and its dual $W^{-1,p}(Omega)$. It emphasizes that this paper studies the `very singular case $1<p le frac{3n-2}{2n-1}$ and the problem is considered under the weak assumption, where the $p$-capacity uniform thickness condition is imposed on the complement of domain $Omega$. There are two main results obtained in our study pertaining to the global gradient estimates of solutions in Lorentz and Lorentz-Morrey spaces involving the use of maximal and fractional maximal operators. The idea for writing this working paper comes directly from the recent results by others in the same research topic, where global estimates for gradient of solutions for the `very singular case still remains a challenge, specifically related to Lorentz and Lorentz-Morrey spaces.