No Arabic abstract
Plug-and-play priors (PnP) is a broadly applicable methodology for solving inverse problems by exploiting statistical priors specified as denoisers. Recent work has reported the state-of-the-art performance of PnP algorithms using pre-trained deep neural nets as denoisers in a number of imaging applications. However, current PnP algorithms are impractical in large-scale settings due to their heavy computational and memory requirements. This work addresses this issue by proposing an incremental variant of the widely used PnP-ADMM algorithm, making it scalable to large-scale datasets. We theoretically analyze the convergence of the algorithm under a set of explicit assumptions, extending recent theoretical results in the area. Additionally, we show the effectiveness of our algorithm with nonsmooth data-fidelity terms and deep neural net priors, its fast convergence compared to existing PnP algorithms, and its scalability in terms of speed and memory.
Recent frameworks, such as the so-called plug-and-play, allow us to leverage the developments in image denoising to tackle other, and more involved, problems in image processing. As the name suggests, state-of-the-art denoisers are plugged into an iterative algorithm that alternates between a denoising step and the inversion of the observation operator. While these tools offer flexibility, the convergence of the resulting algorithm may be difficult to analyse. In this paper, we plug a state-of-the-art denoiser, based on a Gaussian mixture model, in the iterations of an alternating direction method of multipliers and prove the algorithm is guaranteed to converge. Moreover, we build upon the concept of scene-adapted priors where we learn a model targeted to a specific scene being imaged, and apply the proposed method to address the hyperspectral sharpening problem.
Plug-and-play priors (PnP) is a methodology for regularized image reconstruction that specifies the prior through an image denoiser. While PnP algorithms are well understood for denoisers performing maximum a posteriori probability (MAP) estimation, they have not been analyzed for the minimum mean squared error (MMSE) denoisers. This letter addresses this gap by establishing the first theoretical convergence result for the iterative shrinkage/thresholding algorithm (ISTA) variant of PnP for MMSE denoisers. We show that the iterates produced by PnP-ISTA with an MMSE denoiser converge to a stationary point of some global cost function. We validate our analysis on sparse signal recovery in compressive sensing by comparing two types of denoisers, namely the exact MMSE denoiser and the approximate MMSE denoiser obtained by training a deep neural net.
The CASH problem has been widely studied in the context of automated configurations of machine learning (ML) pipelines and various solvers and toolkits are available. However, CASH solvers do not directly handle black-box constraints such as fairness, robustness or other domain-specific custom constraints. We present our recent approach [Liu, et al., 2020] that leverages the ADMM optimization framework to decompose CASH into multiple small problems and demonstrate how ADMM facilitates incorporation of black-box constraints.
There has been considerable progress made towards conversational models that generate coherent and fluent responses; however, this often involves training large language models on large dialogue datasets, such as Reddit. These large conversational models provide little control over the generated responses, and this control is further limited in the absence of annotated conversational datasets for attribute specific generation that can be used for fine-tuning the model. In this paper, we first propose and evaluate plug-and-play methods for controllable response generation, which does not require dialogue specific datasets and does not rely on fine-tuning a large model. While effective, the decoding procedure induces considerable computational overhead, rendering the conversational model unsuitable for interactive usage. To overcome this, we introduce an approach that does not require further computation at decoding time, while also does not require any fine-tuning of a large language model. We demonstrate, through extensive automatic and human evaluation, a high degree of control over the generated conversational responses with regard to multiple desired attributes, while being fluent.
In this paper, we study the problem of inferring time-varying Markov random fields (MRF), where the underlying graphical model is both sparse and changes sparsely over time. Most of the existing methods for the inference of time-varying MRFs rely on the regularized maximum likelihood estimation (MLE), that typically suffer from weak statistical guarantees and high computational time. Instead, we introduce a new class of constrained optimization problems for the inference of sparsely-changing MRFs. The proposed optimization problem is formulated based on the exact $ell_0$ regularization, and can be solved in near-linear time and memory. Moreover, we show that the proposed estimator enjoys a provably small estimation error. As a special case, we derive sharp statistical guarantees for the inference of sparsely-changing Gaussian MRFs (GMRF) in the high-dimensional regime, showing that such problems can be learned with as few as one sample per time. Our proposed method is extremely efficient in practice: it can accurately estimate sparsely-changing graphical models with more than 500 million variables in less than one hour.