Anderson acceleration (AA) is a popular method for accelerating fixed-point iterations, but may suffer from instability and stagnation. We propose a globalization method for AA to improve stability and achieve unified global and local convergence. Unlike existing AA globalization approaches that rely on safeguarding operations and might hinder fast local convergence, we adopt a nonmonotone trust-region framework and introduce an adaptive quadratic regularization together with a tailored acceptance mechanism. We prove global convergence and show that our algorithm attains the same local convergence as AA under appropriate assumptions. The effectiveness of our method is demonstrated in several numerical experiments.
We present AUQ-ADMM, an adaptive uncertainty-weighted consensus ADMM method for solving large-scale convex optimization problems in a distributed manner. Our key contribution is a novel adaptive weighting scheme that empirically increases the progress made by consensus ADMM scheme and is attractive when using a large number of subproblems. The weights are related to the uncertainty associated with the solutions of each subproblem, and are efficiently computed using low-rank approximations. We show AUQ-ADMM provably converges and demonstrate its effectiveness on a series of machine learning applications, including elastic net regression, multinomial logistic regression, and support vector machines. We provide an implementation based on the PyTorch package.
Based on an observation that additive Schwarz methods for general convex optimization can be interpreted as gradient methods, we propose an acceleration scheme for additive Schwarz methods. Adopting acceleration techniques developed for gradient methods such as momentum and adaptive restarting, the convergence rate of additive Schwarz methods is greatly improved. The proposed acceleration scheme does not require any a priori information on the levels of smoothness and sharpness of a target energy functional, so that it can be applied to various convex optimization problems. Numerical results for linear elliptic problems, nonlinear elliptic problems, nonsmooth problems, and nonsharp problems are provided to highlight the superiority and the broad applicability of the proposed scheme.
We prove non asymptotic linear convergence rates for the constrained Anderson acceleration extrapolation scheme. These guarantees come from new upper bounds on the constrained Chebyshev problem, which consists in minimizing the maximum absolute value of a polynomial on a bounded real interval with $l_1$ constraints on its coefficients vector. Constrained Anderson Acceleration has a numerical cost comparable to that of the original scheme.
Many computer graphics problems require computing geometric shapes subject to certain constraints. This often results in non-linear and non-convex optimization problems with globally coupled variables, which pose great challenge for interactive applications. Local-global solvers developed in recent years can quickly compute an approximate solution to such problems, making them an attractive choice for applications that prioritize efficiency over accuracy. However, these solvers suffer from lower convergence rate, and may take a long time to compute an accurate result. In this paper, we propose a simple and effective technique to accelerate the convergence of such solvers. By treating each local-global step as a fixed-point iteration, we apply Anderson acceleration, a well-established technique for fixed-point solvers, to speed up the convergence of a local-global solver. To address the stability issue of classical Anderson acceleration, we propose a simple strategy to guarantee the decrease of target energy and ensure its global convergence. In addition, we analyze the connection between Anderson acceleration and quasi-Newton methods, and show that the canonical choice of its mixing parameter is suitable for accelerating local-global solvers. Moreover, our technique is effective beyond classical local-global solvers, and can be applied to iterative methods with a common structure. We evaluate the performance of our technique on a variety of geometry optimization and physics simulation problems. Our approach significantly reduces the number of iterations required to compute an accurate result, with only a slight increase of computational cost per iteration. Its simplicity and effectiveness makes it a promising tool for accelerating existing algorithms as well as designing efficient new algorithms.
The null distributed controllability of the semilinear heat equation $y_t-Delta y + g(y)=f ,1_{omega}$, assuming that $g$ satisfies the growth condition $g(s)/(vert svert log^{3/2}(1+vert svert))rightarrow 0$ as $vert svert rightarrow infty$ and that $g^primein L^infty_{loc}(mathbb{R})$ has been obtained by Fernandez-Cara and Zuazua in 2000. The proof based on a fixed point argument makes use of precise estimates of the observability constant for a linearized heat equation. It does not provide however an explicit construction of a null control. Assuming that $g^primein W^{s,infty}(mathbb{R})$ for one $sin (0,1]$, we construct an explicit sequence converging strongly to a null control for the solution of the semilinear equation. The method, based on a least-squares approach, generalizes Newton type methods and guarantees the convergence whatever be the initial element of the sequence. In particular, after a finite number of iterations, the convergence is super linear with a rate equal to $1+s$. Numerical experiments in the one dimensional setting support our analysis.