Do you want to publish a course? Click here

Suppression of Gate Screening on Edge Magnetoplasmons by Highly Resistive ZnO Gate

66   0   0.0 ( 0 )
 Added by Norio Kumada
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate a way to suppress high-frequency coupling between a gate and low-dimensional electron systems in the gigahertz range by measuring the velocity of edge magnetoplasmons (EMPs) in InAs quantum Hall systems.We compare the EMPvelocity in three samples with different electromagnetic environments-one has a highly resistive zinc oxide (ZnO) top gate, another has a normal metal (Ti/Au) top gate, and the other does not have a gate. The measured EMP velocity in the ZnO gate sample is one order of magnitude larger than that in the Ti/Au gate sample and almost the same as that in the ungated sample. As is well known, the smaller velocity in the Ti/Au gate sample is due to the screening of the electric field in EMPs. The suppression of the gate screening effect in the ZnO gate sample allows us to measure the velocity of unscreened EMPs while changing the electron density. It also offers a way to avoid unwanted high-frequency coupling between quantum Hall edge channels and gate electrodes.



rate research

Read More

A random-phase approximation (RPA) treatment of edge magnetoplasmons (EMP) is presented for strong magnetic fields, low temperatures, and integer filling factors u. It is valid for negligible dissipation and lateral confining potentials smooth on the scale of the magnetic length ell_{0} but sufficiently steep that the Landau-level (LL) flattening can be neglected. LL coupling, screening by edge states, and nonlocal contributions to the current density are taken into account. In addition to the fundamental mode with typical dispersion relation omegasim q_x ln(q_{x}), fundamental modes with {it acoustic} dispersion relation omegasim q_x are obtained for u>2. For u=1,2 a {bf dipole} mode exists, with dispersion relation omegasim q_x^3, that is directly related to nonlocal responses.
114 - N. Kumada , P. Roulleau , B. Roche 2014
We investigate intrinsic and extrinsic decay of edge magnetoplasmons (EMPs) in graphene quantum Hall (QH) systems by high-frequency electronic measurements. From EMP resonances in disk shaped graphene, we show that the dispersion relation of EMPs is nonlinear due to interactions, giving rise to intrinsic decay of EMP wavepacket. We also identify extrinsic dissipation mechanisms due to interaction with localized states in bulk graphene from the decay time of EMP wavepackets. We indicate that, owing to the unique linear and gapless band structure, EMP dissipation in graphene can be lower than that in GaAs systems.
149 - N. Paradiso , S. Heun , S. Roddaro 2013
Electronic Mach-Zehnder interferometers in the Quantum Hall (QH) regime are currently discussed for the realization of quantum information schemes. A recently proposed device architecture employs interference between two co-propagating edge channels. Here we demonstrate the precise control of individual edge-channel trajectories in quantum point contact devices in the QH regime. The biased tip of an atomic force microscope is used as a moveable local gate to pilot individual edge channels. Our results are discussed in light of the implementation of multi-edge interferometers.
The electronic states at graphene-SiO$_2$ interface and their inhomogeneity was investigated using the back-gate-voltage dependence of local tunnel spectra acquired with a scanning tunneling microscope. The conductance spectra show two, or occasionally three, minima that evolve along the bias-voltage axis with the back gate voltage. This evolution is modeled using tip-gating and interface states. The energy dependent interface states density, $D_{it}(E)$, required to model the back-gate evolution of the minima, is found to have significant inhomogeneity in its energy-width. A broad $D_{it}(E)$ leads to an effect similar to a reduction in the Fermi velocity while the narrow $D_{it}(E)$ leads to the pinning of the Fermi energy close to the Dirac point, as observed in some places, due to enhanced screening of the gate electric field by the narrow $D_{it}(E)$
We develop an InAs nanowire gate-all-around field-effect transistor using a transparent conductive zinc oxide (ZnO) gate electrode, which is in-situ atomic layer deposited after growth of gate insulator of Al2O3. We perform magneto-transport measurements and find a crossover from weak localization to weak antilocalization effect with increasing gate voltage, which demonstrates that the Rashba spin-orbit coupling is tuned by the gate electrode. The efficiency of the gate tuning of the spin-orbit interaction is higher than those obtained for two-dimensional electron gas, and as high as that for a gate-all-around nanowire metal-oxide-semiconductor field-effect transistor that was previously reported. The spin-orbit interaction is discussed in line with not only conventionally used one-dimensional model but also recently proposed model that considers effects of microscopic band structures of materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا