Do you want to publish a course? Click here

Atmosphere loss in planet-planet collisions

118   0   0.0 ( 0 )
 Added by Thomas Denman
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many of the planets discovered by the Kepler satellite are close orbiting Super-Earths or Mini-Neptunes. Such objects exhibit a wide spread of densities for similar masses. One possible explanation for this density spread is giant collisions stripping planets of their atmospheres. In this paper we present the results from a series of smoothed particle hydrodynamics (SPH) simulations of head-on collisions of planets with significant atmospheres and bare projectiles without atmospheres. Collisions between planets can have sufficient energy to remove substantial fractions of the mass from the target planet. We find the fraction of mass lost splits into two regimes -- at low impact energies only the outer layers are ejected corresponding to atmosphere dominated loss, at higher energies material deeper in the potential is excavated resulting in significant core and mantle loss. Mass removal is less efficient in the atmosphere loss dominated regime compared to the core and mantle loss regime, due to the higher compressibility of atmosphere relative to core and mantle. We find roughly twenty per cent atmosphere remains at the transition between the two regimes. We find that the specific energy of this transition scales linearly with the ratio of projectile to target mass for all projectile-target mass ratios measured. The fraction of atmosphere lost is well approximated by a quadratic in terms of the ratio of specific energy and transition energy. We provide algorithms for the incorporation of our scaling law into future numerical studies.



rate research

Read More

We investigate the physical characteristics of the Solar Systems proposed Planet Nine using modeling tools with a heritage in studying Uranus and Neptune. For a range of plausible masses and interior structures, we find upper limits on the intrinsic Teff, from ~35-50 K for masses of 5-20 M_Earth, and we also explore lower Teff values. Possible planetary radii could readily span from 3 to 6 R_Earth depending on the mass fraction of any H/He envelope. Given its cold temperature, the planet encounters significant methane condensation, which dramatically alters the atmosphere away from simple Neptune-like expectations. We find the atmosphere is strongly depleted in molecular absorption at visible wavelengths, suggesting a Rayleigh scattering atmosphere with a high geometric albedo approaching 0.75. We highlight two diagnostics for the atmospheres temperature structure, the first being the value of the methane mixing ratio above the methane cloud. The second is the wavelength at which cloud scattering can be seen, which yields the cloud-top pressure. Surface reflection may be seen if the atmosphere is thin. Due to collision-induced opacity of H2 in the infrared, the planet would be extremely blue (instead of red) in the shortest wavelength WISE colors if methane is depleted, and would, in some cases, exist on the verge of detectability by WISE. For a range of models, thermal fluxes from ~3-5 microns are ~20 orders of magnitude larger than blackbody expectations. We report a search of the AllWISE Source Catalog for Planet Nine, but find no detection.
As an exoplanet orbits its host star it reflects and emits light, forming a distinctive phase curve. By observing this light, we can study the atmosphere and surface of distant planets. The planets in our Solar System show a wide range of atmospheric phenomena, with stable wind patterns, changing storms, and evolving anomalies. Brown dwarfs also exhibit atmospheric variability. Such temporal variability in the atmosphere of a giant exoplanet has not to date been observed. HAT-P-7 b is an exoplanet with a known offset in the peak of its phase curve. Here we present variations in the peak offset ranging between -0.086+0.033-0.033 to 0.143+0.040-0.037 in phase, implying that the peak brightness repeatedly shifts from one side of the planets substellar point to the other. The variability occurs on a timescale of tens to hundreds of days. These shifts in brightness are indicative of variability in the planets atmosphere, and result from a changing balance of thermal emission and reflected flux from the planets dayside. We suggest that variation in wind speed in the planetary atmosphere, leading to variable cloud coverage on the dayside and a changing energy balance, is capable of explaining the observed variation.
The SIM Lite mission will undertake several planet surveys. One of them, the Deep Planet Survey, is designed to detect Earth-mass exoplanets in the habitable zones of nearby main sequence stars. A double blind study has been conducted to assess the capability of SIM to detect such small planets in a multi-planet system where several giant planets might be present. One of the tools which helped in deciding if the detected planets were actual was an orbit integrator using the publicly available HNBody code so that the orbit solutions could be analyzed in terms of temporal stability over many orbits. In this contribution, we describe the implementation of this integrator and analyze the different blind test solutions. We discuss also the usefulness of this method given that some planets might be not detected but still affect the overall stability of the system.
98 - Elyar Sedaghati 2017
We derive the 0.01 $mu$m binned transmission spectrum, between 0.74 and 1.0 $mu$m, of WASP-80b from low resolution spectra obtained with the FORS2 instrument attached to ESOs Very Large Telescope. The combination of the fact that WASP-80 is an active star, together with instrumental and telluric factors, introduces correlated noise in the observed transit light curves, which we treat quantitatively using Gaussian Processes. Comparison of our results together with those from previous studies, to theoretically calculated models reveals an equilibrium temperature in agreement with the previously measured value of 825K, and a sub-solar metallicity, as well as an atmosphere depleted of molecular species with absorption bands in the IR ($gg 5sigma$). Our transmission spectrum alone shows evidence for additional absorption from the potassium core and wing, whereby its presence is detected from analysis of narrow 0.003 $mu$m bin light curves ($gg 5sigma$). Further observations with visible and near-UV filters will be required to expand this spectrum and provide more in-depth knowledge of the atmosphere. These detections are only made possible through an instrument-dependent baseline model and a careful analysis of systematics in the data.
Planet-planet scattering best explains the eccentricity distribution of extrasolar giant planets. Past literature showed that the orbits of planets evolve due to planet-planet scattering. This work studies the spin evolution of planets in planet-planet scattering in 2-planet systems. Spin can evolve dramatically due to spin-orbit coupling made possible by the evolving spin and orbital precession during the planet-planet scattering phase. The main source of torque to planet spin is the stellar torque, and the total planet-plane torque contribution is negligible. As a consequence of the evolution of the spin, planets can end up with significant obliquity (the angle between a planets own orbit normal and spin axis) like planets in our Solar System.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا