No Arabic abstract
In the current article, we study anisotropic spherically symmetric strange star under the background of $f(R,T)$ gravity using the metric potentials of Tolman-Kuchowicz type~cite{Tolman1939,Kuchowicz1968} as $lambda(r)=ln(1+ar^2+br^4)$ and $ u(r)=Br^2+2ln C$ which are free from singularity, satisfy stability criteria and also well behaved. We calculate the value of constants $a$, $b$, $B$ and $C$ using matching conditions and the observed values of the masses and radii of known samples. To describe the strange quark matter (SQM) distribution, here we have used the phenomenological MIT bag model equation of state (EOS) where the density profile ($rho$) is related to the radial pressure ($p_r$) as $p_r(r)=frac{1}{3}(rho-4B_g)$. Here quark pressure is responsible for generation of bag constant $B_g$. Motivation behind this study lies in finding out a non-singular physically acceptable solution having various properties of strange stars. The model shows consistency with various energy conditions, TOV equation, Herreras cracking condition and also with Harrison-Zel$$dovich-Novikovs static stability criteria. Numerical values of EOS parameter and the adiabatic index also enhance the acceptability of our model.
We attempt to study a singularity-free model for the spherically symmetric anisotropic strange stars under Einsteins general theory of relativity by exploiting the Tolman-Kuchowicz metric. Further, we have assumed that the cosmological constant $Lambda$ is a scalar variable dependent on the spatial coordinate $r$. To describe the strange star candidates we have considered that they are made of strange quark matter (SQM) distribution, which is assumed to be governed by the MIT bag equation of state. To obtain unknown constants of the stellar system we match the interior Tolman-Kuchowicz metric to the exterior modified Schwarzschild metric with the cosmological constant, at the surface of the system. Following Deb et al. we have predicted the exact values of the radii for different strange star candidates based on the observed values of the masses of the stellar objects and the chosen parametric values of the $Lambda$ as well as the bag constant $mathcal{B}$. The set of solutions satisfies all the physical requirements to represent strange stars. Interestingly, our study reveals that as the values of the $Lambda$ and $mathcal{B}$ increase the anisotropic system becomes gradually smaller in size turning the whole system into a more compact ultra-dense stellar object.
In this article we propose a relativistic model of a static spherically symmetric anisotropic strange star with the help of Tolman-Kuchowicz (TK) metric potentials [Tolman, Phys. Rev. {bf55}, 364 (1939) and Kuchowicz, Acta Phys. Pol. {bf33}, 541 (1968)]. The form of the potentials are $lambda(r)=ln(1+ar^2+br^4)$ and $ u(r)=Br^2+2ln C$ where $a$, $b$, $B$ and $C$ are constants which we have to evaluate using boundary conditions. We also consider the simplest form of the phenomenological MIT bag equation of state (EOS) to represent the strange quark matter (SQM) distribution inside the stellar system. Here, the radial pressure $p_r$ relates with the density profile $rho$ as follows, $p_r(r)=frac{1}{3}[rho(r)-4B_g]$, where $B_g$ is the Bag constant. To check the physical acceptability and stability of the stellar system based on the obtained solutions, we have performed various physical tests. It is shown that the model satisfies all the stability criteria, including nonsingular nature of the density and pressure, implies stable nature. Here, the Bag constant for different strange star candidates are found to be $(68-70)$~MeV/{fm}$^3$ which satisfies all the acceptability criteria and remains in the experimental range.
In this article we try to present spherically symmetric isotropic strange star model under the framework of $f(R,mathcal{T})$ theory of gravity. To this end, we consider that the Lagrangian density is an arbitrary linear function of the Ricci scalar $R$ and the trace of the energy momentum tensor~$mathcal{T}$ given as $fleft(R,mathcal{T}right)=R+2chi T$. We also assume that the quark matter distribution is governed by the simplest form of the MIT bag model equation of state (EOS) as $p=frac{1}{3}left(rho-4Bright)$, where $B$ is the bag constant. We have obtained an exact solution of the modified form of the the Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of $f(R,mathcal{T})$ gravity theory and studied the dependence of different physical properties, viz., total mass, radius, energy density and pressure on the chosen values of $chi$. Further, to examine physical acceptability of the proposed stellar model in detail, we conducted different tests, viz. energy conditions, modified TOV equation, mass-radius relation, causality condition etc. We have precisely explained the effects arising due to the coupling of the matter and geometry on the compact stellar system. For a chosen value of the Bag constant we have predicted numerical values of different physical parameters in tabular format for the different strange stars. It is found that as the factor $chi$ increases the strange stars shrink gradually and become less massive to turn into a more compact stellar system. The maximum mass point is well within the observational limits and hence our proposed model is suitable to explain the ultra dense compact stars. For $chi=0$ we retrieve as usual the standard results of general relativity (GR).
For the accurate understanding of compact objects such as neutron stars and strange stars, the Tolmann-Openheimer-Volkof (TOV) equation has proved to be of great use. Hence, in this work, we obtain the TOV equation for the energy-momentum-conserved $f(R,T)$ theory of gravity to study strange quark stars. The $f(R,T)$ theory is important, especially in cosmology, because it solves certain incompleteness of the standard model. In general, there is no intrinsic conservation of the energy-momentum tensor in the $f(R,T)$ gravity. Since this conservation is important in the astrophysical context, we impose the condition $ abla T_{mu u}=0$, so that we obtain a function $f(R,T)$ that implies conservation. This choice of a function $f(R,T)$ that conserves the momentum-energy tensor gives rise to a strong link between gravity and the microphysics of the compact object. We obtain the TOV by taking into account a linear equation of state to describe the matter inside strange stars, such as $p=omegarho$ and the MIT bag model $p=omega(rho-4B)$. With these assumptions it was possible to derive macroscopic properties of these objects.
In this paper we present a strange stellar model using Tolman $V$ type metric potential employing simplest form of the MIT bag equation of state (EOS) for the quark matter. We consider that the stellar system is spherically symmetric, compact and made of an anisotropic fluid. Choosing different values of $n$ we obtain exact solutions of the Einstein field equations and finally conclude that for a specific value of the parameter $n=1/2$ we find physically acceptable features of the stellar object. Further we conduct different physical tests, viz., the energy condition, generalized TOV equation, Herreras cracking concept, etc., to confirm physical validity of the presented model. Matching conditions provide expressions for different constants whereas maximization of the anisotropy parameter provides bag constant. By using the observed data of several compact stars we derive exact values of some of the physical parameters and exhibit their features in a tabular form. It is to note that our predicted value of the bag constant satisfies the report of CERN-SPS and RHIC.