Do you want to publish a course? Click here

A Unified Dual-view Model for Review Summarization and Sentiment Classification with Inconsistency Loss

280   0   0.0 ( 0 )
 Added by Hou Pong Chan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Acquiring accurate summarization and sentiment from user reviews is an essential component of modern e-commerce platforms. Review summarization aims at generating a concise summary that describes the key opinions and sentiment of a review, while sentiment classification aims to predict a sentiment label indicating the sentiment attitude of a review. To effectively leverage the shared sentiment information in both review summarization and sentiment classification tasks, we propose a novel dual-view model that jointly improves the performance of these two tasks. In our model, an encoder first learns a context representation for the review, then a summary decoder generates a review summary word by word. After that, a source-view sentiment classifier uses the encoded context representation to predict a sentiment label for the review, while a summary-view sentiment classifier uses the decoder hidden states to predict a sentiment label for the generated summary. During training, we introduce an inconsistency loss to penalize the disagreement between these two classifiers. It helps the decoder to generate a summary to have a consistent sentiment tendency with the review and also helps the two sentiment classifiers learn from each other. Experiment results on four real-world datasets from different domains demonstrate the effectiveness of our model.



rate research

Read More

Person Re-identification (ReID) aims at matching a person of interest across images. In convolutional neural networks (CNNs) based approaches, loss design plays a role of metric learning which guides the feature learning process to pull closer features of the same identity and to push far apart features of different identities. In recent years, the combination of classification loss and triplet loss achieves superior performance and is predominant in ReID. In this paper, we rethink these loss functions within a generalized formulation and argue that triplet-based optimization can be viewed as a two-class subsampling classification, which performs classification over two sampled categories based on instance similarities. Furthermore, we present a case study which demonstrates that increasing the number of simultaneously considered instance classes significantly improves the ReID performance, since it is aligned better with the ReID test/inference process. With the multi-class subsampling classification incorporated, we provide a strong baseline which achieves the state-of-the-art performance on the benchmark person ReID datasets. Finally, we propose a new meta prototypical N-tuple loss for more efficient multi-class subsampling classification. We aim to inspire more new loss designs in the person ReID field.
With the rapid increase of multimedia data, a large body of literature has emerged to work on multimodal summarization, the majority of which target at refining salient information from textual and visual modalities to output a pictorial summary with the most relevant images. Existing methods mostly focus on either extractive or abstractive summarization and rely on qualified image captions to build image references. We are the first to propose a Unified framework for Multimodal Summarization grounding on BART, UniMS, that integrates extractive and abstractive objectives, as well as selecting the image output. Specially, we adopt knowledge distillation from a vision-language pretrained model to improve image selection, which avoids any requirement on the existence and quality of image captions. Besides, we introduce a visual guided decoder to better integrate textual and visual modalities in guiding abstractive text generation. Results show that our best model achieves a new state-of-the-art result on a large-scale benchmark dataset. The newly involved extractive objective as well as the knowledge distillation technique are proven to bring a noticeable improvement to the multimodal summarization task.
83 - Song Yang , Jacopo Urbani 2021
We study the problem of performing automatic stance classification on social media with neural architectures such as BERT. Although these architectures deliver impressive results, their level is not yet comparable to the one of humans and they might produce errors that have a significant impact on the downstream task (e.g., fact-checking). To improve the performance, we present a new neural architecture where the input also includes automatically generated negated perspectives over a given claim. The model is jointly learned to make simultaneously multiple predictions, which can be used either to improve the classification of the original perspective or to filter out doubtful predictions. In the first case, we propose a weakly supervised method for combining the predictions into a final one. In the second case, we show that using the confidence scores to remove doubtful predictions allows our method to achieve human-like performance over the retained information, which is still a sizable part of the original input.
Recently, various neural encoder-decoder models pioneered by Seq2Seq framework have been proposed to achieve the goal of generating more abstractive summaries by learning to map input text to output text. At a high level, such neural models can freely generate summaries without any constraint on the words or phrases used. Moreover, their format is closer to human-edited summaries and output is more readable and fluent. However, the neural models abstraction ability is a double-edged sword. A commonly observed problem with the generated summaries is the distortion or fabrication of factual information in the article. This inconsistency between the original text and the summary has caused various concerns over its applicability, and the previous evaluation methods of text summarization are not suitable for this issue. In response to the above problems, the current research direction is predominantly divided into two categories, one is to design fact-aware evaluation metrics to select outputs without factual inconsistency errors, and the other is to develop new summarization systems towards factual consistency. In this survey, we focus on presenting a comprehensive review of these fact-specific evaluation methods and text summarization models.
103 - Bo Wang , Tao Shen , Guodong Long 2021
Aspect-level sentiment classification (ALSC) aims at identifying the sentiment polarity of a specified aspect in a sentence. ALSC is a practical setting in aspect-based sentiment analysis due to no opinion term labeling needed, but it fails to interpret why a sentiment polarity is derived for the aspect. To address this problem, recent works fine-tune pre-trained Transformer encoders for ALSC to extract an aspect-centric dependency tree that can locate the opinion words. However, the induced opinion words only provide an intuitive cue far below human-level interpretability. Besides, the pre-trained encoder tends to internalize an aspects intrinsic sentiment, causing sentiment bias and thus affecting model performance. In this paper, we propose a span-based anti-bias aspect representation learning framework. It first eliminates the sentiment bias in the aspect embedding by adversarial learning against aspects prior sentiment. Then, it aligns the distilled opinion candidates with the aspect by span-based dependency modeling to highlight the interpretable opinion terms. Our method achieves new state-of-the-art performance on five benchmarks, with the capability of unsupervised opinion extraction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا