Do you want to publish a course? Click here

A Contextual Hierarchical Attention Network with Adaptive Objective for Dialogue State Tracking

64   0   0.0 ( 0 )
 Added by Yong Shan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent studies in dialogue state tracking (DST) leverage historical information to determine states which are generally represented as slot-value pairs. However, most of them have limitations to efficiently exploit relevant context due to the lack of a powerful mechanism for modeling interactions between the slot and the dialogue history. Besides, existing methods usually ignore the slot imbalance problem and treat all slots indiscriminately, which limits the learning of hard slots and eventually hurts overall performance. In this paper, we propose to enhance the DST through employing a contextual hierarchical attention network to not only discern relevant information at both word level and turn level but also learn contextual representations. We further propose an adaptive objective to alleviate the slot imbalance problem by dynamically adjust weights of different slots during training. Experimental results show that our approach reaches 52.68% and 58.55% joint accuracy on MultiWOZ 2.0 and MultiWOZ 2.1 datasets respectively and achieves new state-of-the-art performance with considerable improvements (+1.24% and +5.98%).

rate research

Read More

This paper describes our approach to DSTC 9 Track 2: Cross-lingual Multi-domain Dialog State Tracking, the task goal is to build a Cross-lingual dialog state tracker with a training set in rich resource language and a testing set in low resource language. We formulate a method for joint learning of slot operation classification task and state tracking task respectively. Furthermore, we design a novel mask mechanism for fusing contextual information about dialogue, the results show the proposed model achieves excellent performance on DSTC Challenge II with a joint accuracy of 62.37% and 23.96% in MultiWOZ(en - zh) dataset and CrossWOZ(zh - en) dataset, respectively.
113 - Qiang Cui , Shu Wu , Yan Huang 2017
Sequential recommendation is one of fundamental tasks for Web applications. Previous methods are mostly based on Markov chains with a strong Markov assumption. Recently, recurrent neural networks (RNNs) are getting more and more popular and has demonstrated its effectiveness in many tasks. The last hidden state is usually applied as the sequences representation to make recommendation. Benefit from the natural characteristics of RNN, the hidden state is a combination of long-term dependency and short-term interest to some degrees. However, the monotonic temporal dependency of RNN impairs the users short-term interest. Consequently, the hidden state is not sufficient to reflect the users final interest. In this work, to deal with this problem, we propose a Hierarchical Contextual Attention-based GRU (HCA-GRU) network. The first level of HCA-GRU is conducted on the input. We construct a contextual input by using several recent inputs based on the attention mechanism. This can model the complicated correlations among recent items and strengthen the hidden state. The second level is executed on the hidden state. We fuse the current hidden state and a contextual hidden state built by the attention mechanism, which leads to a more suitable users overall interest. Experiments on two real-world datasets show that HCA-GRU can effectively generate the personalized ranking list and achieve significant improvement.
66 - Puhai Yang , Heyan Huang , 2020
As a key component in a dialogue system, dialogue state tracking plays an important role. It is very important for dialogue state tracking to deal with the problem of unknown slot values. As far as we known, almost all existing approaches depend on pointer network to solve the unknown slot value problem. These pointer network-based methods usually have a hidden assumption that there is at most one out-of-vocabulary word in an unknown slot value because of the character of a pointer network. However, often, there are multiple out-of-vocabulary words in an unknown slot value, and it makes the existing methods perform bad. To tackle the problem, in this paper, we propose a novel Context-Sensitive Generation network (CSG) which can facilitate the representation of out-of-vocabulary words when generating the unknown slot value. Extensive experiments show that our proposed method performs better than the state-of-the-art baselines.
Dialogue state tracking (DST) is a pivotal component in task-oriented dialogue systems. While it is relatively easy for a DST model to capture belief states in short conversations, the task of DST becomes more challenging as the length of a dialogue increases due to the injection of more distracting contexts. In this paper, we aim to improve the overall performance of DST with a special focus on handling longer dialogues. We tackle this problem from three perspectives: 1) A model designed to enable hierarchical slot status prediction; 2) Balanced training procedure for generic and task-specific language understanding; 3) Data perturbation which enhances the models ability in handling longer conversations. We conduct experiments on the MultiWOZ benchmark, and demonstrate the effectiveness of each component via a set of ablation tests, especially on longer conversations.
Task-oriented conversational systems often use dialogue state tracking to represent the users intentions, which involves filling in values of pre-defined slots. Many approaches have been proposed, often using task-specific architectures with special-purpose classifiers. Recently, good results have been obtained using more general architectures based on pretrained language models. Here, we introduce a new variation of the language modeling approach that uses schema-driven prompting to provide task-aware history encoding that is used for both categorical and non-categorical slots. We further improve performance by augmenting the prompting with schema descriptions, a naturally occurring source of in-domain knowledge. Our purely generative system achieves state-of-the-art performance on MultiWOZ 2.2 and achieves competitive performance on two other benchmarks: MultiWOZ 2.1 and M2M. The data and code will be available at https://github.com/chiahsuan156/DST-as-Prompting.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا