Do you want to publish a course? Click here

Feedback of molecular outflows from protostars in NGC 1333, revealed by Herschel and Spitzer spectro-imaging observations

258   0   0.0 ( 0 )
 Added by Odysseas Dionatos
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Large scale spectral maps of star forming regions enable the comparative study of the gas excitation around an ensemble of sources at a common frame of reference, providing direct insights in the multitude of processes involved. In this paper we employ spectral-line maps to decipher the excitation, the kinematical and dynamical processes in NGC 1333 as revealed by a number of different emission lines, aiming to set a reference for the applicability of tracers in constraining diverse physical processes. We reconstruct line maps for H$_2$ , CO, H$_2$O and C$^+$ using data obtained with the Spitzer-IRS and Herschel HIFI-SPIRE. We compare the morphological features of the maps and derive the gas excitation for regions of interest employing LTE and non-LTE methods. We also calculate the kinematical and dynamical properties for each outflow tracer consistently for all outflows in NGC 1333. We finally measure the water abundance in outflows with respect to carbon monoxide and molecular hydrogen. CO and H$_2$ are highly excited around B-stars and at lower levels trace protostellar outflows. H$_2$O emission is dominated by a moderately fast component associated with outflows. Intermediate J CO lines appear brightest at the locations traced by a narrow H$_2$O component, indicating that beyond the dominating collisional processes, a secondary, radiative excitation component can also be active. The morphology, kinematics, excitation and abundance variations of water are consistent with its excitation and partial dissociation in shocks. Water abundance ranges between 5 x 10$^{-7}$ and 10$^{-5}$, with the lower values being more representative. Water is brightest and most abundant around IRAS 4A which is consistent with the latter hosting a hot corino source. Finally, the outflow mass flux is found highest for CO and decreases by one and two orders of magnitude for H$_2$ and H$_2$O, respectively.



rate research

Read More

Star-formation feedback onto the parent cloud is conventionally examined through the study of molecular outflows. Little is however known on the effect that atomic ejecta, tracing fast shocks, can have on the global cloud properties. In this study we employ Herschel/PACS [OI] and [CII] spectral line maps of the NGC 1333 star-forming region to assess the relative influence of atomic jets onto the star-formation process. Atomic line maps are compared against molecular outflow tracers and atomic ejecta are associated to individual driving sources. We study the detailed morphology and velocity distribution of [OI] line using channel and line-centroid maps and derive the momentum, energy, and mass flux for all the bipolar jets traced by [OI] line emission. We find that the line-centroid maps can trace velocity structures down to 5 km s$^{-1}$ which is a factor of $sim$20 beyond the nominal velocity resolution reached by Herschel/PACS. These maps reveal an unprecedented degree of details that assist significantly in the association and characterization of jets and outflows. Comparisons of the dynamical and kinematical properties shows that [OI] momentum accounts for only $sim$1% of the momentum carried by the large scale CO outflows but the energy released through the jets corresponds to 50 - 100% of the energy released in outflows. The estimated ratios of the jet to the outflow momenta and energies are consistent with the results of two-component, nested jet/outflow simulations, where jets are associated to episodic accretion events. Under this scenario, the energy from atomic jets to the cloud is as important as the energy output from outflows in maintaining turbulence and dissipating the cloud gas.
200 - R. Visser 2011
Aims. Young stars interact vigorously with their surroundings, as evident from the highly rotationally excited CO (up to Eup=4000 K) and H2O emission (up to 600 K) detected by the Herschel Space Observatory in embedded low-mass protostars. Our aim is to construct a model that reproduces the observations quantitatively, to investigate the origin of the emission, and to use the lines as probes of the various heating mechanisms. Methods. The model consists of a spherical envelope with a bipolar outflow cavity. Three heating mechanisms are considered: passive heating by the protostellar luminosity, UV irradiation of the outflow cavity walls, and C-type shocks along the cavity walls. Line fluxes are calculated for CO and H2O and compared to Herschel data and complementary ground-based data for the protostars NGC1333 IRAS2A, HH 46 and DK Cha. The three sources are selected to span a range of evolutionary phases and physical characteristics. Results. The passively heated gas in the envelope accounts for 3-10% of the CO luminosity summed over all rotational lines up to J=40-39; it is best probed by low-J CO isotopologue lines such as C18O 2-1 and 3-2. The UV-heated gas and the C-type shocks, probed by 12CO 10-9 and higher-J lines, contribute 20-80% each. The model fits show a tentative evolutionary trend: the CO emission is dominated by shocks in the youngest source and by UV-heated gas in the oldest one. This trend is mainly driven by the lower envelope density in more evolved sources. The total H2O line luminosity in all cases is dominated by shocks (>99%). The exact percentages for both species are uncertain by at least a factor of 2 due to uncertainties in the gas temperature as function of the incident UV flux. However, on a qualitative level, both UV-heated gas and C-type shocks are needed to reproduce the emission in far-infrared rotational lines of CO and H2O.
116 - O. Dionatos 2013
We report on spectro-imaging observations employing Spitzer IRS and Herschel PACS, aiming to constrain the physical conditions around SMM3 and SMM4 in Serpens. The combined power of both instruments provides an almost complete wavelength coverage between 5 and 200 micron at an angular resolution of 10. We detect line emission from all major molecular (H2, CO, H2O and OH) and many atomic ([OI], [CII], [FeII], [SiII] and [SI]) coolants. Line emission tends to peak at distances of 10 - 20 from the protostellar sources, at positions of known outflow shocks. The only exception is [CII] which likely traces a PDR excited from the neighboring source SMM6. Excitation analysis indicates that H2 and CO originate from gas at two distinct rotational temperatures of 300 K and 1000 K, while H2O and OH emission corresponds to rotational temperatures of 100 - 200 K. The morphological and physical association between CO and H2 suggests a common excitation mechanism which allows direct comparisons between the two molecules. The CO/H2 abundance ratio varies from 10^-5 in the warm gas up to 10^-4 in the hotter regions. The occurrence of J-shocks is suggested by the strong atomic/ionic (except for [CII]) emission as well as a number of line ratio diagnostics. Both C- and J-shocks can account for the observed molecular emission, however J-shocks are strongly advocated by the atomic emission and provide simpler and more homogeneous solutions for CO and H2. C-shocks describe better the emission from H2O and OH. The variations in the CO/H2 abundance ratio for gas at different temperatures can be interpreted by their reformation rates in dissociative J-type shocks, or the simultaneous influence of both C and J shocks.
We present mid-infrared spectral maps of the NGC 1333 star forming region, obtained with the the Infrared Spectrometer on board the Spitzer Space Telescope. Eight pure H2 rotational lines, from S (0) to S (7), are detected and mapped. The H2 emission appears to be associated with the warm gas shocked by the multiple outflows present in the region. A comparison between the observed intensities and the predictions of detailed shock models indicates that the emission arises in both slow (12 - 24 km/s) and fast (36 - 53 km/s) C-type shocks with an initial ortho-to-para ratio of ~ 1. The present H2 ortho-to-para ratio exhibits a large degree of spatial variations. In the post-shocked gas, it is usually about 2, i.e. close to the equilibrium value (~ 3). However, around at least two outflows, we observe a region with a much lower (~ 0.5) ortho-to-para ratio. This region probably corresponds to gas which has been heated-up recently by the passage of a shock front, but whose ortho-to-para has not reached equilibrium yet. This, together with the low initial ortho-to-para ratio needed to reproduce the observed emission, provide strong evidence that H2 is mostly in para form in cold molecular clouds. The H2 lines are found to contribute to 25 - 50% of the total outflow luminosity, and thus can be used to ascertain the importance of star formation feedback on the natal cloud. From these lines, we determine the outflow mass loss rate and, indirectly, the stellar infall rate, the outflow momentum and the kinetic energy injected into the cloud over the embedded phase. The latter is found to exceed the binding energy of individual cores, suggesting that outflows could be the main mechanism for core disruption.
We identify protostars in Spitzer surveys of nine star-forming molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine photometry from 2MASS J, H, and Ks bands and Spitzer IRAC and MIPS 24 micron bands to create 1 - 24 micron spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities (Lbol), we derive a relationship between Lbol, L_MIR (integrated from 1 - 24 microns), and SED slope. Estimations of Lbol for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high mass star forming clouds peak near 1 Lsun and show a tail extending toward luminosities above 100 Lsun. The luminosity functions of the low mass star forming clouds do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 Lsun. Finally, we examine the luminosity functions as a function of the local surface density of YSOs. In the Orion molecular cloud, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those predicted by models and find that our observed luminosity functions are best matched by models which invoke competitive accretion, although we do not find strong agreement of the high mass star forming clouds with any of the models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا