Do you want to publish a course? Click here

Modelling Herschel observations of hot molecular gas emission from embedded low-mass protostars

197   0   0.0 ( 0 )
 Added by Ruud Visser
 Publication date 2011
  fields Physics
and research's language is English
 Authors R. Visser




Ask ChatGPT about the research

Aims. Young stars interact vigorously with their surroundings, as evident from the highly rotationally excited CO (up to Eup=4000 K) and H2O emission (up to 600 K) detected by the Herschel Space Observatory in embedded low-mass protostars. Our aim is to construct a model that reproduces the observations quantitatively, to investigate the origin of the emission, and to use the lines as probes of the various heating mechanisms. Methods. The model consists of a spherical envelope with a bipolar outflow cavity. Three heating mechanisms are considered: passive heating by the protostellar luminosity, UV irradiation of the outflow cavity walls, and C-type shocks along the cavity walls. Line fluxes are calculated for CO and H2O and compared to Herschel data and complementary ground-based data for the protostars NGC1333 IRAS2A, HH 46 and DK Cha. The three sources are selected to span a range of evolutionary phases and physical characteristics. Results. The passively heated gas in the envelope accounts for 3-10% of the CO luminosity summed over all rotational lines up to J=40-39; it is best probed by low-J CO isotopologue lines such as C18O 2-1 and 3-2. The UV-heated gas and the C-type shocks, probed by 12CO 10-9 and higher-J lines, contribute 20-80% each. The model fits show a tentative evolutionary trend: the CO emission is dominated by shocks in the youngest source and by UV-heated gas in the oldest one. This trend is mainly driven by the lower envelope density in more evolved sources. The total H2O line luminosity in all cases is dominated by shocks (>99%). The exact percentages for both species are uncertain by at least a factor of 2 due to uncertainties in the gas temperature as function of the incident UV flux. However, on a qualitative level, both UV-heated gas and C-type shocks are needed to reproduce the emission in far-infrared rotational lines of CO and H2O.



rate research

Read More

OH is a key species in the water chemistry of star-forming regions, because its presence is tightly related to the formation and destruction of water. This paper presents OH observations from 23 low- and intermediate-mass young stellar objects obtained with the PACS integral field spectrometer on-board Herschel in the context of the Water In Star-forming Regions with Herschel (WISH) key program. Most low-mass sources have compact OH emission (< 5000 AU scale), whereas the OH lines in most intermediate-mass sources are extended over the whole PACS detector field-of-view (> 20000 AU). The strength of the OH emission is correlated with various source properties such as the bolometric luminosity and the envelope mass, but also with the OI and H2O emission. Rotational diagrams for sources with many OH lines show that the level populations of OH can be approximated by a Boltzmann distribution with an excitation temperature at around 70 K. Radiative transfer models of spherically symmetric envelopes cannot reproduce the OH emission fluxes nor their broad line widths, strongly suggesting an outflow origin. Slab excitation models indicate that the observed excitation temperature can either be reached if the OH molecules are exposed to a strong far-infrared continuum radiation field or if the gas temperature and density are sufficiently high. Using realistic source parameters and radiation fields, it is shown for the case of Ser SMM1 that radiative pumping plays an important role in transitions arising from upper level energies higher than 300 K. The compact emission in the low-mass sources and the required presence of a strong radiation field and/or a high density to excite the OH molecules points towards an origin in shocks in the inner envelope close to the protostar.
Complex organic molecules (COMs) have been observed towards several low-mass young stellar objects (LYSOs). Small and heterogeneous samples have so far precluded conclusions on typical COM abundances, as well as the origin(s) of abundance variations between sources. We present observations towards 16 deeply embedded (Class 0/I) low-mass protostars using the IRAM 30m telescope. We detect CH$_2$CO, CH$_3$CHO, CH$_3$OCH$_3$, CH$_3$OCHO, CH$_3$CN, HNCO, and HC$_3$N towards 67%, 37%, 13%, 13%, 44%, 81%, and 75% of sources respectively. Median column densities derived using survival analysis range between 6.0x10$^{10}$ cm$^{-2}$ (CH$_3$CN) and 2.4x10$^{12}$ cm$^{-2}$ (CH$_3$OCH$_3$) and median abundances range between 0.48% (CH$_3$CN) and 16% (HNCO) with respect to CH$_3$OH. Column densities for each molecule vary by about one order of magnitude across the sample. Abundances with respect to CH$_3$OH are more narrowly distributed, especially for oxygen-bearing species. We compare observed median abundances with a chemical model for low-mass protostars and find fair agreement, although some modeling work remains to bring abundances higher with respect to CH$_3$OH. Median abundances with respect to CH$_3$OH in LYSOs are also found to be generally comparable to observed abundances in hot cores, hot corinos, and massive young stellar objects. Compared with comets, our sample is comparable for all molecules except HC$_3$N and CH$_2$CO, which likely become depleted at later evolutionary stages.
Recent observations from Herschel allow the identification of important mechanisms responsible for the heating of gas surrounding low-mass protostars and its subsequent cooling in the far-infrared (FIR). Shocks are routinely invoked to reproduce some properties of the far-IR spectra, but standard models fail to reproduce the emission from key molecules, e.g. H$_2$O. Here, we present the Herschel-PACS far-IR spectroscopy of 90 embedded low-mass protostars (Class 0/I). The Herschel-PACS spectral maps covering $sim55-210$ $mu$m with a field-of-view of $sim$50 are used to quantify the gas excitation conditions and spatial extent using rotational transitions of H$_{2}$O, high-$J$ CO, and OH, as well as [O I] and [C II]. We confirm that a warm ($sim$300 K) CO reservoir is ubiquitous and that a hotter component ($760pm170$ K) is frequently detected around protostars. The line emission is extended beyond $sim$1000 AU spatial scales in 40/90 objects, typically in molecular tracers in Class 0 and atomic tracers in Class I objects. High-velocity emission ($gtrsim90$ km s$^{-1}$) is detected in only 10 sources in the [O I] line, suggesting that the bulk of [O I] arises from gas that is moving slower than typical jets. Line flux ratios show an excellent agreement with models of $C$-shocks illuminated by UV photons for pre-shock densities of $sim$$10^5$ cm$^{-3}$ and UV fields 0.1-10 times the interstellar value. The far-IR molecular and atomic lines are a unique diagnostic of feedback from UV emission and shocks in envelopes of deeply embedded protostars.
[Abridged] We present spectroscopic observations in H$_{2}$O, CO and related species with textit{Herschel} HIFI and PACS, as well as ground-based follow-up with the JCMT and APEX in CO, HCO$^{+}$ and isotopologues, of a sample of 49 nearby ($d<$500,pc) candidate protostars. These data are used to study the outflow and envelope properties of these sources. We also compile their continuum SEDs in order to constrain their physical properties. Water emission is dominated by shocks associated with the outflow, rather than the cooler, slower entrained outflowing gas probed by ground-based CO observations. These shocks become less energetic as sources evolve from Class 0 to Class I. The fraction of mass in the outflow relative to the total envelope (i.e. $M_{mathrm{out}}/M_{mathrm{env}}$) remains broadly constant between Class 0 and I. The median value ($sim$1$%$) is consistent with a core to star formation efficiency on the order of 50$%$ and an outflow duty cycle on the order of 5$%$. Entrainment efficiency, as probed by $F_{mathrm{CO}}/dot{M}_{mathrm{acc}}$, is also invariant with source properties and evolutionary stage. The median value (6.3kms{}) suggests an entrainment efficiency of between 30 and 60$%$ if the wind is launched at $sim$1AU. $L$[O,{sc i}] is strongly correlated with $L_{mathrm{bol}}$ but not with $M_{mathrm{env}}$, while low-$J$ CO is more closely correlated with the latter than the former. This suggests that [O,{sc i}] traces the present-day accretion activity while CO traces time-averaged accretion over the dynamical timescale of the outflow. $L$[O,{sc i}] does not vary from Class 0 to Class I, unlike CO and H$_{2}$O. This is likely due to the ratio of atomic to molecular gas in the wind increasing as the source evolves, balancing out the decrease in mass accretion rate. Infall signatures are detected in HCO$^{+}$ and H$_{2}$O in a few sources.
(Abridged) Through spectrally unresolved observations of high-J CO transitions, Herschel-PACS has revealed large reservoirs of warm (300 K) and hot (700 K) molecular gas around low-mass protostars. We aim to shed light on the excitation and origin of the CO ladder observed toward protostars, and on the water abundance in different physical components using spectrally resolved Herschel-HIFI data. Observations are presented of the highly excited CO line J=16-15 with Herschel-HIFI toward 24 low-mass protostellar objects. The spectrally resolved profiles show two distinct velocity components: a broad component with an average FWHM of 20 km/s, and a narrower component with a FWHM of 5 km/s that is often offset from the source velocity. The average rotational temperature over the entire profile, as measured from comparison between CO J=16-15 and 10-9 emission, is ~300 K. A radiative-transfer analysis shows that the average H2O/CO column-density ratio is ~0.02, suggesting a total H2O abundance of ~2x10^-6. Two distinct velocity profiles observed in the HIFI line profiles suggest that the CO ladder observed with PACS consists of two excitation components. The warm component (300 K) is associated with the broad HIFI component, and the hot component (700 K) is associated with the offset HIFI component. The former originates in either outflow cavity shocks or the disk wind, and the latter in irradiated shocks. The ubiquity of the warm and hot CO components suggests that fundamental mechanisms govern the excitation of these components; we hypothesize that the warm component arises when H2 stops being the dominant coolant. In this scenario, the hot component arises in cooling molecular H2-poor gas just prior to the onset of H2 formation. High spectral resolution observations of highly excited CO transitions uniquely shed light on the origin of warm and hot gas in low-mass protostellar objects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا