Let $M^n$ be a complete, open Riemannian manifold with $Ric geq 0$. In 1994, Grigori Perelman showed that there exists a constant $delta_{n}>0$, depending only on the dimension of the manifold, such that if the volume growth satisfies $alpha_M := lim_{r to infty} frac{Vol(B_p(r))}{omega_n r^n} geq 1-delta_{n}$, then $M^n$ is contractible. Here we employ the techniques of Perelman to find specific lower bounds for the volume growth, $alpha(k,n)$, depending only on $k$ and $n$, which guarantee the individual $k$-homotopy group of $M^n$ is trivial.
Suppose $(M,g)$ is a Riemannian manifold having dimension $n$, nonnegative Ricci curvature, maximal volume growth and unique tangent cone at infinity. In this case, the tangent cone at infinity $C(X)$ is an Euclidean cone over the cross-section $X$. Denote by $alpha=lim_{rrightarrowinfty}frac{mathrm{Vol}(B_{r}(p))}{r^{n}}$ the asymptotic volume ratio. Let $h_{k}=h_{k}(M)$ be the dimension of the space of harmonic functions with polynomial growth of growth order at most $k$. In this paper, we prove a upper bound of $h_{k}$ in terms of the counting function of eigenvalues of $X$. As a corollary, we obtain $lim_{krightarrowinfty}k^{1-n}h_{k}=frac{2alpha}{(n-1)!omega_{n}}$. These results are sharp, as they recover the corresponding well-known properties of $h_{k}(mathbb{R}^{n})$. In particular, these results hold on manifolds with nonnegative sectional curvature and maximal volume growth.
Let M be a Riemannian n-manifold with n greater than or equal to 3. For k between 1 and n, we say M has k-positive Ricci curvature if at every point of M the sum of any k eigenvalues of the Ricci curvature is strictly positive. In particular, one positive Ricci curvature is equivalent to positive Ricci curvature and n-positive Ricci curvature is equivalent to positive scalar curvature. Let G be the fundamental group of the closed manifold M. We say that G is virtually free if G contains a free subgroup of finite index, or equivalently, if some finite cover of M has a fundamental group that is a free group. In this paper we will prove: Let M be a closed Riemannian n-manifold, with n greater than or equal to 3, such that (n-1)-eigenvalues of the Ricci curvature are strictly positive. Then the fundamental group of M is virtually free. As an immediate consequence we have: Let M be a closed Riemannian n-manifold, with n greater than or equal to 3, with 2-positive Ricci curvature. Then the fundamental group of M is virtually free.
In a previous paper, we constructed complete manifolds of positive Ricci curvature with quadratically asymptotically nonnegative curvature and infinite topological type but dimension $ge 6$. The purpose of the present paper is to use a different way to exhibit a family of complete $I$-dimensinal ($Ige5$) Riemannian manifolds of positive Ricci curvature, quadratically asymptotically nonnegative sectional curvature, and certain infinite Betti number $b_j$ ($2le jle I-2$).