Do you want to publish a course? Click here

Direct limits on the interaction of antiprotons with axion-like dark matter

81   0   0.0 ( 0 )
 Added by Yevgeny Stadnik
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Astrophysical observations indicate that there is roughly five times more dark matter in the Universe than ordinary baryonic matter, with an even larger amount of the Universes energy content due to dark energy. So far, the microscopic properties of these dark components have remained shrouded in mystery. In addition, even the five percent of ordinary matter in our Universe has yet to be understood, since the Standard Model of particle physics lacks any consistent explanation for the predominance of matter over antimatter. Inspired by these central problems of modern physics, we present here a direct search for interactions of antimatter with dark matter, and place direct constraints on the interaction of ultra-light axion-like particles $-$ one of the dark-matter candidates $-$ and antiprotons. If antiprotons exhibit a stronger coupling to these dark-matter particles than protons, such a CPT-odd coupling could provide a link between dark matter and the baryon asymmetry in the Universe. We analyse spin-flip resonance data acquired with a single antiproton in a Penning trap [Smorra et al., Nature 550, 371 (2017)] in the frequency domain to search for spin-precession effects from ultra-light axions with a characteristic frequency governed by the mass of the underlying particle. Our analysis constrains the axion-antiproton interaction parameter $f_a/C_{overline{p}}$ to values greater than $0.1$ to $0.6$ GeV in the mass range from $2 times 10^{-23}$ to $4 times 10^{-17},$eV/$c^2$, improving over astrophysical antiproton bounds by up to five orders of magnitude. In addition, we derive limits on six combinations of previously unconstrained Lorentz-violating and CPT-violating terms of the non-minimal Standard Model Extension.

rate research

Read More

We present an interesting Higgs portal model where an axion-like particle (ALP) couples to the Standard Model sector only via the Higgs field. The ALP becomes stable due to CP invariance and turns out to be a natural candidate for freeze-in dark matter because its properties are controlled by the perturbative ALP shift symmetry. The portal coupling can be generated non-perturbatively by a hidden confining gauge sector, or radiatively by new leptons charged under the ALP shift symmetry. Such UV completions generally involve a CP violating phase, which makes the ALP unstable and decay through mixing with the Higgs boson, but can be sufficiently suppressed in a natural way by invoking additional symmetries.
97 - R.H. Sanders 2013
The LUX experimental group has just announced the most stringent upper limits so far obtained on the cross section of WIMP-nucleon elastic scattering [1]. This result is a factor of two to five below the previous best upper limit [2] and effectively rules out earlier suggestions of low mass WIMP detection signals. The experimental expertise exhibited by this group is extremely impressive, but the fact of continued negative results raises the more basic question of whether or not this is the right approach to solving the dark matter problem. Here I comment upon this question, using as a basis the final chapter of my book on dark matter [3], somewhat revised and extended. I muse on dark matter and its alternative, modified Newtonian dynamics, or MOND.
Many existing and proposed experiments targeting QCD axion dark matter (DM) can also search for a broad class of axion-like particles (ALPs). We analyze the experimental sensitivities to electromagnetically-coupled ALP DM in different cosmological scenarios with the relic abundance set by the misalignment mechanism. We obtain benchmark DM targets for the standard thermal cosmology, a pre-nucleosynthesis period of early matter domination, and a period of kination. These targets are theoretically simple and assume $mathcal{O}(1)$ misalignment angles, avoiding fine-tuning of the initial conditions. We find that some experiments will have sensitivity to these ALP DM targets before they are sensitive to the QCD axion, and others can potentially reach interesting targets below the QCD band. The ALP DM abundance also depends on the origin of the ALP mass. Temperature-dependent masses that are generated by strong dynamics (as for the QCD axion) correspond to DM candidates with smaller decay constants, resulting in even better detection prospects.
118 - Wei Cheng , Ligong Bian , 2021
In this paper, we propose a generalized natural inflation (GNI) model to study axion-like particle (ALP) inflation and dark matter (DM). GNI contains two additional parameters $(n_1, n_2)$ in comparison with the natural inflation, that make GNI more general. The $n_1$ build the connection between GNI and other ALP inflation model, $n_2$ controls the inflaton mass. After considering the cosmic microwave background and other cosmological observation limits, the model can realize small-field inflation with a wide mass range, and the ALP inflaton considering here can serve as the DM candidate for certain parameter spaces.
217 - Viviana Gammaldi 2014
It has been shown that the gamma-ray flux observed by HESS from the J1745-290 Galactic Center source is well fitted as the secondary gamma-rays photons generated from Dark Matter annihilating into Standard Model particles in combination with a simple power law background. The neutrino flux expected from such Dark Matter source has been also analyzed. The main results of such analyses for 50 TeV Dark Matter annihilating into W+W- gauge boson and preliminary results for antiprotons are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا