Do you want to publish a course? Click here

Highlights on gamma rays, neutrinos and antiprotons from TeV Dark Matter

245   0   0.0 ( 0 )
 Added by Viviana Gammaldi
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been shown that the gamma-ray flux observed by HESS from the J1745-290 Galactic Center source is well fitted as the secondary gamma-rays photons generated from Dark Matter annihilating into Standard Model particles in combination with a simple power law background. The neutrino flux expected from such Dark Matter source has been also analyzed. The main results of such analyses for 50 TeV Dark Matter annihilating into W+W- gauge boson and preliminary results for antiprotons are presented.



rate research

Read More

The $gamma$-ray and neutrino emissions from dark matter (DM) annihilation in galaxy clusters are studied. After about one year operation of Fermi-LAT, several nearby clusters are reported with stringent upper limits of GeV $gamma$-ray emission. We use the Fermi-LAT upper limits of these clusters to constrain the DM model parameters. We find that the DM model distributed with substructures predicted in cold DM (CDM) scenario is strongly constrained by Fermi-LAT $gamma$-ray data. Especially for the leptonic annihilation scenario which may account for the $e^{pm}$ excesses discovered by PAMELA/Fermi-LAT/HESS, the constraint on the minimum mass of substructures is of the level $10^2-10^3$ M$_{odot}$, which is much larger than that expected in CDM picture, but is consistent with a warm DM scenario. We further investigate the sensitivity of neutrino detections of the clusters by IceCube. It is found that neutrino detection is much more difficult than $gamma$-rays. Only for very heavy DM ($sim 10$ TeV) together with a considerable branching ratio to line neutrinos the neutrino sensitivity is comparable with that of $gamma$-rays.
The IceCube neutrino discovery presents an opportunity to answer long-standing questions in high-energy astrophysics. For their own sake and relations to other processes, it is important to understand neutrinos arising from the Milky Way, which should have an accompanying flux of gamma rays. Examining Fermi TeV data, and applying other constraints up to >1 PeV, it appears implausible that the Galactic fraction of the IceCube flux is large, though could be present at some level. We address Sgr A*, where the TeV-PeV neutrinos may outrun gamma rays due to gamma-gamma opacity, and further implications, including dark matter and cosmic-ray electrons.
445 - Jesus Zavala 2014
The IceCube Neutrino Observatory has observed highly energetic neutrinos in excess of the expected atmospheric neutrino background. It is intriguing to consider the possibility that such events are probing physics beyond the standard model. In this context, $mathcal{O}$(PeV) dark matter particles decaying to neutrinos have been considered while dark matter annihilation has been dismissed invoking the unitarity bound as a limiting factor. However, the latter claim was done ignoring the contribution from dark matter substructure, which for PeV Cold Dark Matter would extend down to a free streaming mass of $mathcal{O}$($10^{-18}$M$_odot$). Since the unitarity bound is less stringent at low velocities, ($sigma_{rm ann}$v)$leq4pi/m_chi^2v$, then, it is possible that these cold and dense subhalos would contribute dominantly to a dark-matter-induced neutrino flux and easily account for the events observed by IceCube. A Sommerfeld-enhanced dark matter model can naturally support such scenario. Interestingly, the spatial distribution of the events shows features that would be expected in a dark matter interpretation. Although not conclusive, 9 of the 37 events appear to be clustered around a region near the Galactic Center while 6 others spatially coincide, within the reported angular errors, with 5 of 26 Milky Way satellites. However, a simple estimate of the probability of the latter occurring by chance is $sim35%$. More events are needed to statistically test this hypothesis. PeV dark matter particles are massive enough that their abundance as standard thermal relics would overclose the Universe. This issue can be solved in alternative scenarios, for instance if the decay of new massive unstable particles generates significant entropy reheating the Universe to a slightly lower temperature than the freeze-out temperature, $T_{rm RH} lesssim T_{rm f}sim4times10^4$~GeV.
150 - Stephan Zimmer 2011
Multiwavelength observations suggest that clusters are reservoirs of vast amounts relativistic electrons and positrons that are either injected into and accelerated directly in the intra-cluster medium, or produced as secondary pairs by cosmic ray ions scattering on ambient protons. In these possible scenarios gamma rays are produced either through electrons upscattering low-energy photons or by decay of neutral pions produced by hadronic interactions. In addition, the high mass-to-light ratios in clusters in combination with considerable Dark Matter (DM) overdensities makes them interesting targets for indirect DM searches with gamma rays. The resulting signals are different from known point sources or from diffuse emission and could possibly be detected with the Fermi-LAT. Both WIMP annihilation/decay spectra and cosmic ray induced emission are determined by universal parameters, which make a combined statistical likelihood analysis feasible. We present initial results of this analysis leading to limits on the DM annihilation cross section or decay time and on the hadron injection efficiency.
The detection of high-energy astrophysical neutrinos and ultra-high-energy cosmic rays (UHECRs) provides a new way to explore sources of cosmic rays. One of the highest energy neutrino events detected by IceCube, tagged as IC35, is close to the UHECR anisotropy region detected by Pierre Auger Observatory. The nearby starburst galaxy (SBG), NGC 4945, is close to this anisotropic region and inside the mean angular error of the IC35 event. Considering the hypernovae contribution located in the SB region of NGC 4945, which can accelerate protons up to $sim 10^{17} , {rm eV}$ and inject them into the interstellar medium, we investigate the origin of this event around this starburst galaxy. We show that the interaction of these protons with the SB regions gas density could explain Fermi-LAT gamma-ray and radio observations if the magnetic fields strength in the SB region is the order of $sim rm mG$. Our estimated PeV neutrino events, in ten years, for this source is approximately 0.01 ($4times10^{-4}$) if a proton spectral index of 2.4 (2.7) is considered, which would demonstrate that IC35 is not produced in the central region of this SBG. Additionally, we consider the superwind region of NGC 4945 and show that protons can hardly be accelerated in it up to UHEs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا