Do you want to publish a course? Click here

Three generations of stars: a possible case of triggered star formation

63   0   0.0 ( 0 )
 Added by Sergio Paron
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Evidence for triggered star formation linking three generations of stars is difficult to assemble, as it requires convincingly associating evolved massive stars with Hii regions that, in turn, would need to present signs of active star formation. We present observational evidence for triggered star formation relating three generations of stars in the neighbourhood of the star LS II +26 8. We carried out new spectroscopic observations of LS II +26 8, revealing that it is a B0 III-type star. We note that LS II +26 8 is located exactly at the geometric centre of a semi-shell-like Hii region complex. The most conspicuous component of this complex is the Hii region Sh2-90, which is probably triggering a new generation of stars. The distances to LS II +26 8 and to Sh2-90 are in agreement (between 2.6 and 3 kpc). Analysis of the interstellar medium on a larger spatial scale shows that Hii region complex lies on the northwestern border of an extended H2 shell. The radius of this molecular shell is about 13 pc, which is in agreement with what an O9V star (the probable initial spectral type of LS II +26 8 as inferred from evolutive tracks) can generate through its winds in the molecular environment. In conclusion, the spatial and temporal correspondences derived in our analysis enable us to propose a probable triggered star formation scenario initiated by the evolved massive star LS II +26 8 during its main sequence stage, followed by stars exciting the Hii region complex formed in the molecular shell, and culminating in the birth of YSOs around Sh2-90.



rate research

Read More

According to a triggered star formation scenario (e.g. Martin-Pintado & Cernicharo 1987) outflows powered by young stellar objects shape the molecular clouds, can dig cavities, and trigger new star formation. NGC 1333 is an active site of low- and intermediate star formation in Perseus and is a suggested site of self-regulated star formation Norman & Silk 1980. Therefore it is a suitable target for a study of triggered star formation (e.g. Sandell & Knee 2001, SK 1). On the other hand, continuum sub-mm observations of star forming regions can detect dust thermal emission of embedded sources (which drive outflows), and further detailed structures. Within the framework of our wide-field mapping of star formation regions in the Perseus and Orion molecular clouds using SCUBA at 850 and 450 micrometers, we map NCG 1333 with an area of around 14 x 21. The maps show more structure than the previous maps of the region observed in sub-mm. We have unveiled the known embedded SK 1 source (in the dust shell of the SSV 13 ridge) and detailed structure of the region, among some other young protostars. In agreement with the SK 1 observations, our map of the region shows lumpy filaments and shells/cavities that seem to be created by outflows. The measured mass of SK 1 (~0.07 Msun) is much less than its virial mass (~0.2-1 Msun). Our observations support the idea of SK 1 as an event triggered by outflow-driven shells in NGC 1333 (induced by an increase in gas pressure and density due to radiation pressure from the stellar winds, that have presumably created the dust shell). This kind of evidences provides a more thorough understanding of the star formation regulation processes.
We present a multi-wavelength study of the IR bubble G24.136+00.436. The J=1-0 observations of $^{12}$CO, $^{13}$CO and C$^{18}$O were carried out with the Purple Mountain Observatory 13.7 m telescope. Molecular gas with a velocity of 94.8 km s$^{-1}$ is found prominently in the southeast of the bubble, shaping as a shell with a total mass of $sim2times10^{4}$ $M_{odot}$. It is likely assembled during the expansion of the bubble. The expanding shell consists of six dense cores. Their dense (a few of $10^{3}$ cm$^{-3}$) and massive (a few of $10^{3}$ $M_{odot}$) characteristics coupled with the broad linewidths ($>$ 2.5 km s$^{-1}$) suggest they are promising sites of forming high-mass stars or clusters. This could be further consolidated by the detection of compact HII regions in Cores A and E. We tentatively identified and classified 63 candidate YSOs based on the emph{Spitzer} and UKIDSS data. They are found to be dominantly distributed in regions with strong emission of molecular gas, indicative of active star formation especially in the shell. The HII region inside the bubble is mainly ionized by a $sim$O8V star(s), of the dynamical age $sim$1.6 Myr. The enhanced number of candidate YSOs and secondary star formation in the shell as well as time scales involved, indicate a possible scenario of triggering star formation, signified by the collect and collapse process.
The origin of the stellar initial mass function (IMF) is a fundamental issue in the theory of star formation. It is generally fit with a composite power law. Some clues on the progenitors can be found in dense starless cores that have a core mass function (CMF) with a similar shape. In the low-mass end, these mass functions increase with mass, albeit the sample may be somewhat incomplete; in the high-mass end, the mass functions decrease with mass. There is an offset in the turn-over mass between the two mass distributions. The stellar mass for the IMF peak is lower than the corresponding core mass for the CMF peak in the Pipe Nebula by about a factor of three. Smaller offsets are found between the IMF and the CMFs in other nebulae. We suggest that the offset is likely induced during a starburst episode of global star formation which is triggered by the formation of a few O/B stars in the multi-phase media, which naturally emerged through the onset of thermal instability in the cloud-core formation process. We consider the scenario that the ignition of a few massive stars photoionizes the warm medium between the cores, increases the external pressure, reduces their Bonnor?Ebert mass, and triggers the collapse of some previously stable cores. We quantitatively reproduce the IMF in the low-mass end with the assumption of additional rotational fragmentation.
60 - Gen Chiaki , Hajime Susa , 2018
Metal enrichment by the first-generation (Pop III) stars is the very first step of the matter cycle in the structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by the Pop III stars, we carry out a series of numerical simulations including the feedback effects of photoionization and supernovae (SNe) of Pop III stars with a range of masses of minihaloes (MHs), M_halo , and Pop III stars, M_PopIII . We find that the metal-rich ejecta reaches neighbouring haloes and external enrichment (EE) occurs when the halo binding energy is sufficiently below the SN explosion energy, E_SN . The neighbouring haloes are only superficially enriched, and the metallicity of the clouds is [Fe/H] < -5. Otherwise, the SN ejecta falls back and recollapses to form enriched cloud, i.e. internal enrichment (IE) process takes place. In case that a Pop III star explodes as a core-collapse SNe (CCSNe), MHs undergo IE, and the metallicity in the recollapsing region is -5 < [Fe/H] < -3 in most cases. We conclude that IE from a single CCSN can explain the formation of EMP stars. For pair-instability SNe (PISNe), EE takes place for all relevant mass range of MHs, consistent with no observational sign of PISNe among EMP stars.
Star formation is a fundamental process for galactic evolution. One issue over the last several decades has been determining whether star formation is induced by external triggers or is self-regulated in a closed system. The role of an external trigger, which can effectively collect mass in a small volume, has attracted particular attention in connection with the formation of massive stellar clusters, which in the extreme may lead to starbursts. Recent observations have revealed massive cluster formation triggered by cloud-cloud collisions in nearby interacting galaxies, including the Magellanic system and the Antennae Galaxies as well as almost all well-known high-mass star-forming regions such as RCW 120, M20, M42, NGC 6334, etc., in the Milky Way. Theoretical efforts are laying the foundation for the mass compression that causes massive cluster/star formation. Here, we review the recent progress on cloud-cloud collisions and triggered star-cluster formation and discuss the future prospects for this area of research.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا