Do you want to publish a course? Click here

Recovery of a Time-Dependent Bottom Topography Function from the Shallow Water Equations via an Adjoint Approach

86   0   0.0 ( 0 )
 Added by Jolene Britton
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We develop an adjoint approach for recovering the topographical function included in the source term of one-dimensional hyperbolic balance laws. We focus on a specific system, namely the shallow water equations, in an effort to recover the riverbed topography. The novelty of this work is the ability to robustly recover the bottom topography using only noisy boundary data from one measurement event and the inclusion of two regularization terms in the iterative update scheme. The adjoint scheme is determined from a linearization of the forward system and is used to compute the gradient of a cost function. The bottom topography function is recovered through an iterative process given by a three-operator splitting method which allows the feasibility to include two regularization terms. Numerous numerical tests demonstrate the robustness of the method regardless of the choice of initial guess and in the presence of discontinuities in the solution of the forward problem.



rate research

Read More

The regularisation of nonlinear hyperbolic conservation laws has been a problem of great importance for achieving uniqueness of weak solutions and also for accurate numerical simulations. In a recent work, the first two authors proposed a so-called Hamiltonian regularisation for nonlinear shallow water and isentropic Euler equations. The characteristic property of this method is that the regularisation of solutions is achieved without adding any artificial dissipation or ispersion. The regularised system possesses a Hamiltonian structure and, thus, formally preserves the corresponding energy functional. In the present article we generalise this approach to shallow water waves over general, possibly time-dependent, bottoms. The proposed system is solved numerically with continuous Galerkin method and its solutions are compared with the analogous solutions of the classical shallow water and dispersive Serre-Green-Naghdi equations. The numerical results confirm the absence of dispersive and dissipative effects in presence of bathymetry variations.
We carry out the group classification of the class of two-dimensional shallow water equations with variable bottom topography using an optimized version of the method of furcate splitting. The equivalence group of this class is found by the algebraic method. Using algebraic techniques, we construct additional point equivalences between some of the listed cases of Lie-symmetry extensions, which are inequivalent up to transformations from the equivalence group.
We derive boundary conditions and estimates based on the energy and entropy analysis of systems of the nonlinear shallow water equations in two spatial dimensions. It is shown that the energy method provides more details, but is fully consistent with the entropy analysis. The details brought forward by the nonlinear energy analysis allow us to pinpoint where the difference between the linear and nonlinear analysis originate. We find that the result from the linear analysis does not necessarily hold in the nonlinear case. The nonlinear analysis leads in general to a different minimal number of boundary conditions compared with the linear analysis. In particular, and contrary to the linear case, the magnitude of the flow does not influence the number of required boundary conditions.
We classify zeroth-order conservation laws of systems from the class of two-dimensional shallow water equations with variable bottom topography using an optimized version of the method of furcate splitting. The classification is carried out up to equivalence generated by the equivalence group of this class. We find additional point equivalences between some of the listed cases of extensions of the space of zeroth-order conservation laws, which are inequivalent up to transformations from the equivalence group. Hamiltonian structures of systems of shallow water equations are used for relating the classification of zeroth-order conservation laws of these systems to the classification of their Lie symmetries. We also construct generating sets of such conservation laws under action of Lie symmetries.
In this paper we analyze the stability of equilibrium manifolds of hyperbolic shallow water moment equations. Shallow water moment equations describe shallow flows for complex velocity profiles which vary in vertical direction and the models can be seen as extensions of the standard shallow water equations. Equilibrium stability is an important property of balance laws that determines the linear stability of solutions in the vicinity of equilibrium manifolds and it is seen as a necessary condition for stable numerical solutions. After an analysis of the hyperbolic structure of the models, we identify three different stability manifolds based on three different limits of the right-hand side friction term, which physically correspond to water-at-rest, constant-velocity, and bottom-at-rest velocity profiles. The stability analysis then shows that the structural stability conditions are fulfilled for the water-at-rest equilibrium and the constant-velocity equilibrium. However, the bottom-at-rest equilibrium can lead to instable modes depending on the velocity profile. Relaxation towards the respective equilibrium manifolds is investigated numerically for different models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا