No Arabic abstract
We derive boundary conditions and estimates based on the energy and entropy analysis of systems of the nonlinear shallow water equations in two spatial dimensions. It is shown that the energy method provides more details, but is fully consistent with the entropy analysis. The details brought forward by the nonlinear energy analysis allow us to pinpoint where the difference between the linear and nonlinear analysis originate. We find that the result from the linear analysis does not necessarily hold in the nonlinear case. The nonlinear analysis leads in general to a different minimal number of boundary conditions compared with the linear analysis. In particular, and contrary to the linear case, the magnitude of the flow does not influence the number of required boundary conditions.
In this paper we analyze the stability of equilibrium manifolds of hyperbolic shallow water moment equations. Shallow water moment equations describe shallow flows for complex velocity profiles which vary in vertical direction and the models can be seen as extensions of the standard shallow water equations. Equilibrium stability is an important property of balance laws that determines the linear stability of solutions in the vicinity of equilibrium manifolds and it is seen as a necessary condition for stable numerical solutions. After an analysis of the hyperbolic structure of the models, we identify three different stability manifolds based on three different limits of the right-hand side friction term, which physically correspond to water-at-rest, constant-velocity, and bottom-at-rest velocity profiles. The stability analysis then shows that the structural stability conditions are fulfilled for the water-at-rest equilibrium and the constant-velocity equilibrium. However, the bottom-at-rest equilibrium can lead to instable modes depending on the velocity profile. Relaxation towards the respective equilibrium manifolds is investigated numerically for different models.
The regularisation of nonlinear hyperbolic conservation laws has been a problem of great importance for achieving uniqueness of weak solutions and also for accurate numerical simulations. In a recent work, the first two authors proposed a so-called Hamiltonian regularisation for nonlinear shallow water and isentropic Euler equations. The characteristic property of this method is that the regularisation of solutions is achieved without adding any artificial dissipation or ispersion. The regularised system possesses a Hamiltonian structure and, thus, formally preserves the corresponding energy functional. In the present article we generalise this approach to shallow water waves over general, possibly time-dependent, bottoms. The proposed system is solved numerically with continuous Galerkin method and its solutions are compared with the analogous solutions of the classical shallow water and dispersive Serre-Green-Naghdi equations. The numerical results confirm the absence of dispersive and dissipative effects in presence of bathymetry variations.
We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on $mathbb{R}^d$ with stationary law (i.e. spatially homogeneous statistics) and fast decay of correlations on scales larger than the microscale $varepsilon>0$, we establish homogenization error estimates of the order $varepsilon$ in case $dgeq 3$, respectively of the order $varepsilon |log varepsilon|^{1/2}$ in case $d=2$. Previous results in nonlinear stochastic homogenization have been limited to a small algebraic rate of convergence $varepsilon^delta$. We also establish error estimates for the approximation of the homogenized operator by the method of representative volumes of the order $(L/varepsilon)^{-d/2}$ for a representative volume of size $L$. Our results also hold in the case of systems for which a (small-scale) $C^{1,alpha}$ regularity theory is available.
We develop an adjoint approach for recovering the topographical function included in the source term of one-dimensional hyperbolic balance laws. We focus on a specific system, namely the shallow water equations, in an effort to recover the riverbed topography. The novelty of this work is the ability to robustly recover the bottom topography using only noisy boundary data from one measurement event and the inclusion of two regularization terms in the iterative update scheme. The adjoint scheme is determined from a linearization of the forward system and is used to compute the gradient of a cost function. The bottom topography function is recovered through an iterative process given by a three-operator splitting method which allows the feasibility to include two regularization terms. Numerous numerical tests demonstrate the robustness of the method regardless of the choice of initial guess and in the presence of discontinuities in the solution of the forward problem.
In this article, exact traveling wave solutions of a Wick-type stochastic nonlinear Schr{o}dinger equation and of a Wick-type stochastic fractional Regularized Long Wave-Burgers (RLW-Burgers) equation have been obtained by using an improved computational method. Specifically, the Hermite transform is employed for transforming Wick-type stochastic nonlinear partial differential equations into deterministic nonlinear partial differential equations with integral and fraction order. Furthermore, the required set of stochastic solutions in the white noise space is obtained by using the inverse Hermite transform. Based on the derived solutions, the dynamics of the considered equations are performed with some particular values of the physical parameters. The results reveal that the proposed improved computational technique can be applied to solve various kinds of Wick-type stochastic fractional partial differential equations.