Do you want to publish a course? Click here

Direction-sensitive magnetophotonic surface crystal

161   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanometer-thin rare-earth-transition metal (RE-TM) alloys with precisely controlled compositions and out-of-plane magnetic anisotropy are currently in the focus for ultrafast magnetophotonic applications. However, achieving lateral nanoscale dimensions, crucial for potential device downscaling, while maintaining designable optomagnetic functionality and out-of-plane magnetic anisotropy is extremely challenging. Here we integrate nanosized Tb$_{18}$Co$_{82}$ ferrimagnetic alloys, having strong out-of-plane magnetic anisotropy, within a gold plasmonic nanoantenna array to design micrometer-scale a magnetophotonic crystal that exhibit abrupt and narrow magneto-optical spectral features that are both magnetic field and light incidence direction controlled. The narrow Fano-type resonance arises through the interference of the individual nanoantennas surface plasmons and a Rayleigh anomaly of the whole nanoantenna array, in both optical and magneto-optical spectra, which we demonstrate and explain using Maxwell-theory simulations. This robust magnetophotonic crystal opens the way for conceptually new high-resolution light incidence direction sensors, as well as for building blocks for plasmon-assisted all-optical magnetization switching in ferrimagnetic RE-TM alloys.



rate research

Read More

114 - Jun Wu , Feng Wu , Tiancheng Zhao 2021
Kirchhoff s law is one of the most fundamental law in thermal radiation. The violation of traditional Kirchhoff s law provides opportunities for higher energy conversion efficiency. Various micro-structures have been proposed to realize single-band nonreciprocal thermal emitters. However, dual-band nonreciprocal thermal emitters remain barely investigated. In this paper, we introduce magneto-optical material into a cascading one-dimensional (1-D) magnetophotonic crystal (MPC) heterostructure composed of two 1-D MPCs and a metal layer. Assisted by the nonreciprocity of the magneto-optical material and the coupling effect of two optical Tamm states (OTSs), a dual-band nonreciprocal lithography-free thermal emitter is achieved. The emitter exhibits strong dual-band nonreciprocal radiation at the wavelengths of 15.337 um and 15.731 um when the external magnetic field is 3 T and the angle of incidence is 56 degree. Besides, the magnetic field distribution is also calculated to confirm that the dual-band nonreciprocal radiation originates from the coupling effect between two OTSs. Our work may pave the way for constructing dual-band and multi-band nonreciprocal thermal emitters.
We developed a three-dimensional gaseous tracking device and performed a direction-sensitive dark matter search in a surface laboratory. By using 150 Torr carbon-tetrafluoride (CF_4 gas), we obtained a sky map drawn with the recoil directions of the carbon and fluorine nuclei, and set the first limit on the spin-dependent WIMP (Weakly Interacting Massive Particles)-proton cross section by a direction-sensitive method. Thus, we showed that a WIMP-search experiment with a gaseous tracking device can actually set limits. Furthermore, we demonstrated that this method will potentially play a certain role in revealing the nature of dark matter when a low-background large-volume detector is developed.
The use of structured light beams to detect the velocity of targets moving perpendicularly to the beams propagation axis opens new avenues for remote sensing of moving objects. However, determining the direction of motion is still a challenge since detection is usually done by means of an interferometric setup which only provides an absolute value of the frequency shift. Here, we put forward a novel method that addresses this issue. It uses dynamic control of the phase in the transverse plane of the structured light beam so that the direction of the particles movement can be deduced. This is done by noting the change in the magnitude of the frequency shift as the transverse phase of the structured light is moved appropriately. We demonstrate our method with rotating micro-particles that are illuminated by a Laguerre-Gaussian beam with a rotating phase about its propagation axis. Our method, which only requires a dynamically configurable optical beam generator, can easily be used with other types of motion by appropriate engineering and dynamic modulation of the phase of the light beam.
Optomechanical devices sensitively transduce and actuate motion of nanomechanical structures using light. Single--crystal diamond promises to improve the performance of optomechanical devices, while also providing opportunities to interface nanomechanics with diamond color center spins and related quantum technologies. Here we demonstrate dissipative waveguide--optomechanical coupling exceeding 35 GHz/nm to diamond nanobeams supporting both optical waveguide modes and mechanical resonances, and use this optomechanical coupling to measure nanobeam displacement with a sensitivity of $9.5$ fm/$sqrt{text{Hz}}$ and optical bandwidth $>150$nm. The nanobeams are fabricated from bulk optical grade single--crystal diamond using a scalable undercut etching process, and support mechanical resonances with quality factor $2.5 times 10^5$ at room temperature, and $7.2 times 10^5$ in cryogenic conditions (5K). Mechanical self--oscillations, resulting from interplay between photothermal and optomechanical effects, are observed with amplitude exceeding 200 nm for sub-$mu$W absorbed optical power, demonstrating the potential for optomechanical excitation and manipulation of diamond nanomechanical structures.
Demand for lightweight, highly reflective and mechanically compliant mirrors for optics experiments has seen a significant surge. In this aspect, photonic crystal (PhC) membranes are ideal alternatives to conventional mirrors, as they provide high reflectivity with only a single suspended layer of patterned dielectric material. However, due to limitations in nanofabrication, these devices are usually not wider than 300 $mu$m. Here we experimentally demonstrate suspended PhC mirrors spanning areas up to 10$times$10 mm. We overcome limitations imposed by the size of the PhC and measure reflectivities greater than 90% on 56 nm thick mirrors at a wavelength of 1550 nm -- an unrivaled performance compared to PhC mirrors with micro scale diameters. These structures bridge the gap between nano scale technologies and macroscopic optical elements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا