Do you want to publish a course? Click here

Centimeter-scale suspended photonic crystal mirrors

81   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Demand for lightweight, highly reflective and mechanically compliant mirrors for optics experiments has seen a significant surge. In this aspect, photonic crystal (PhC) membranes are ideal alternatives to conventional mirrors, as they provide high reflectivity with only a single suspended layer of patterned dielectric material. However, due to limitations in nanofabrication, these devices are usually not wider than 300 $mu$m. Here we experimentally demonstrate suspended PhC mirrors spanning areas up to 10$times$10 mm. We overcome limitations imposed by the size of the PhC and measure reflectivities greater than 90% on 56 nm thick mirrors at a wavelength of 1550 nm -- an unrivaled performance compared to PhC mirrors with micro scale diameters. These structures bridge the gap between nano scale technologies and macroscopic optical elements.



rate research

Read More

We present here an optomechanical system fabricated with novel stress management techniques that allow us to suspend an ultrathin defect-free silicon photonic-crystal membrane above a Silicon-on-Insulator (SOI) substrate with a gap that is tunable to below 200 nm. Our devices are able to generate strong attractive and repulsive optical forces over a large surface area with simple in- and outcoupling and feature the strongest repulsive optomechanical coupling in any geometry to date (gOM/2{pi} ~ -65 GHz/nm). The interplay between the optomechanical and photo-thermal-mechanical dynamics is explored, and the latter is used to achieve cooling and amplification of the mechanical mode, demonstrating that our platform is well-suited for applications in low-power mass, force, and refractive index sensing as well as and optomechanical accelerometry.
We investigate the nonlinear optical response of suspended 1D photonic crystal nanocavities fabricated on a silicon nitride chip. Strong thermo-optical nonlinearities are demonstrated for input powers as low as $2,mutext{W}$ and a self-sustained pulsing regime is shown to emerge with periodicity of several seconds. As the input power and laser wavelength are varied the temporal patterns change in period, duty cycle and shape. This dynamics is attributed to the multiple timescale competition between thermo-optical and thermo-optomechanical effects and closely resembles the relaxation oscillations states found in mathematical models of neuronal activity. We introduce a simplified model that reproduces all the experimental observations and allows us to explain them in terms of the properties of a 1D critical manifold which governs the slow evolution of the system.
91 - Xiang Xi , Kang-Ping Ye , 2020
The recent realizations of topological valley phase in photonic crystal, an analog of gapped valleytronic materials in electronic system, are limited to the valley Chern number of one. In this letter, we present a new type of valley phase that can have large valley Chern number of two or three. The valley phase transitions between the different valley Chern numbers (from one to three) are realized by changing the configuration of the unit cell. We demonstrate that these new topological phases can guide the wave propagation robustly along the domain wall of sharp bent. Our results are promising for the exploration of new topological phenomena in photonic systems.
We present a method to control the resonant coupling interaction in a coupled-cavity photonic crystal molecule by using a local and reversible photochromic tuning technique. We demonstrate the ability to tune both a two-cavity and a three-cavity photonic crystal molecule through the resonance condition by selectively tuning the individual cavities. Using this technique, we can quantitatively determine important parameters of the coupled-cavity system such as the photon tunneling rate. This method can be scaled to photonic crystal molecules with larger numbers of cavities, which provides a versatile method for studying strong interactions in coupled resonator arrays.
Hybrid quantum information protocols are based on local qubits, such as trapped atoms, NV centers, and quantum dots, coupled to photons. The coupling is achieved through optical cavities. Here we demonstrate far-field optimized H1 photonic crystal membrane cavities combined with an additional back reflection mirror below the membrane that meet the optical requirements for implementing hybrid quantum information protocols. Using numerical optimization we find that 80% of the light can be radiated within an objective numerical aperture of 0.8, and the coupling to a single-mode fiber can be as high as 92%. We experimentally prove the unique external mode matching properties by resonant reflection spectroscopy with a cavity mode visibility above 50%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا