No Arabic abstract
Recent integral field spectroscopic (IFS) surveys have revealed radial gradients in the optical spectral indices of post-starburst galaxies, which can be used to constrain their formation histories. We study the spectral indices of post-processed mock IFS datacubes of binary merger simulations, carefully matched to the properties of the MaNGA IFS survey, with a variety of black hole feedback models, progenitor galaxies, orbits and mass ratios. Based on our simulation sample, we find that only major mergers on prograde-prograde or retrograde-prograde orbits in combination with a mechanical black hole feedback model can form galaxies with weak enough ongoing star formation, and therefore absent H$alpha$ emission, to be selected by traditional PSB selection methods. We find strong fluctuations in nebular emission line strengths, even within the PSB phase, suggesting that H$alpha$ selected PSBs are only a subsample of the underlying population. The global PSB population can be more robustly identified using stellar continuum-based approaches. The difficulty in reproducing the very young PSBs in simulations potentially indicates that new sub-resolution star formation recipes are required to properly model the process of star formation quenching. In our simulations, we find that the starburst peaks at the same time at all radii, but is stronger and more prolonged in the inner regions. This results in a strong time evolution in the radial gradients of the spectral indices which can be used to estimate the age of the starburst without reliance on detailed star formation histories from spectral synthesis models.
Post-starburst galaxies are typically considered to be a transition population, en route to the red sequence after a recent quenching event. Despite this, recent observations have shown that these objects typically have large reservoirs of cold molecular gas. In this paper we study the star-forming gas properties of a large sample of post-starburst galaxies selected from the cosmological, hydrodynamical EAGLE simulations. These objects resemble observed high-mass post-starburst galaxies both spectroscopically and in terms of their space density, stellar mass distribution and sizes. We find that the vast majority of simulated post-starburst galaxies have significant gas reservoirs, with star-forming gas masses of ~10$^9$ M$_{odot}$, in good agreement with those seen in observational samples. The simulation reproduces the observed time evolution of the gas fraction of the post-starburst galaxy population, with the average galaxy losing ~90 per cent of its star-forming interstellar medium in only ~600 Myr. A variety of gas consumption/loss processes are responsible for this rapid evolution, including mergers and environmental effects, while active galactic nuclei play only a secondary role. The fast evolution in the gas fraction of post-starburst galaxies is accompanied by a clear decrease in the efficiency of star formation, due to a decrease in the dense gas fraction. We predict that forthcoming ALMA observations of the gas reservoirs of low-redshift post-starburst galaxies will show that the molecular gas is typically compact and has disturbed kinematics, reflecting the disruptive nature of many of the evolutionary pathways that build up the post-starburst galaxy population.
We perform a fossil record analysis for ~800 low-redshift spiral galaxies, using STARLIGHT applied to integral field spectroscopic observations from the SDSS-IV MaNGA survey to obtain fully spatially-resolved high-resolution star formation histories (SFHs). From the SFHs, we are able to build maps indicating the present-day distribution of stellar populations of different ages in each galaxy. We find small negative mean age gradients in most spiral galaxies, especially at high stellar mass, which reflects the formation times of stellar populations at different galactocentric radii. We show that the youngest (<10^{8.5} years) populations exhibit significantly more extended distributions than the oldest (>10^{9.5} years), again with a strong dependence on stellar mass. By interpreting the radial profiles of time slices as indicative of the size of the galaxy at the time those populations had formed, we are able to trace the simultaneous growth in mass and size of the spiral galaxies over the last 10 Gyr. Despite finding that the evolution of the measured light-weighted radius is consistent with inside-out growth in the majority of spiral galaxies, the evolution of an equivalent mass-weighted radius has changed little over the same time period. Since radial migration effects are likely to be small, we conclude that the growth of disks in spiral galaxies has occurred predominantly through an inside-out mode (with the effect greatest in high-mass galaxies), but this has not had anywhere near as much impact on the distribution of mass within spiral galaxies.
Based on MaNGA integral field unit (IFU) spectroscopy we search 60 AGN candidates, which have stellar masses $M_{star}leqslant5times10^{9}$$M_{odot}$ and show AGN ionization signatures in the BPT diagram. For these AGN candidates, we derive the spatially resolved stellar population with the stellar population synthesis code STARLIGHT and measure the gradients of the mean stellar age and metallicity. We find that the gradients of mean stellar age (metallicity) of individual AGN-host dwarfs are diverse in 0-0.5 Re, 0.5-1 Re and 0-1 Re. However, the overall behavior of the mean stellar age (metallicity) profiles tend to be flat, as the median values of the gradients are close to zero. We further study the overall behavior of the mean stellar age (metallicity) by plotting the co-added radial profiles for the AGN sample and compare with a control sample with similar stellar mass. We find that the median values of light-weighted mean stellar ages of AGN sample are as old as 2-3 ~Gyr within 2 Re,which are about 4-7 times older than those of the control sample. Meanwhile, most of the AGN candidates are low-level AGNs, as only eight sources have L[OIII]>$10^{39.5}$~erg~s$^{-1}$. Hence, the AGNs in dwarf galaxies might accelerate the evolution of galaxies by accelerating the consumption of the gas, resulting in an overall quenching of the dwarf galaxies, and the AGNs also become weak due to the lack of gas. The median values of mass-weighted mean stellar age of both samples within 2 $Re$ are similar and as old as about 10~Gyr, indicating that the stellar mass is mainly contributed by old stellar populations.The gradients of co-added mean stellar metallicity for both samples tend to be negative but close to zero, and the similar mean stellar metallicity profiles for both samples indicate that the chemical evolution of the host galaxy is not strongly influenced by the AGN.
We employ the NASA Infrared Telescope Facilitys near-infrared spectrograph SpeX at 0.8-2.4$mu$m to investigate the spatial distribution of the stellar populations (SPs) in four well known Starburst galaxies: NGC34, NGC1614, NGC3310 and NGC7714. We use the STARLIGHT code updated with the synthetic simple stellar populations models computed by Maraston (2005, M05). Our main results are that the NIR light in the nuclear surroundings of the galaxies is dominated by young/intermediate age SPs ($t leq 2times10^9$yr), summing from $sim$40% up to 100% of the light contribution. In the nuclear aperture of two sources (NGC1614 and NGC3310) we detected a predominant old SP component ($t > 2times10^9$yr), while for NGC34 and NGC7714 the younger component prevails. Furthermore, we found evidence of a circumnuclear star formation ring-like structure and a secondary nucleus in NGC1614, in agreement with previous studies. We also suggest that the merger/interaction experienced by three of the galaxies studied, NGC1614, NGC3310 and NGC7714 can explain the lower metallicity values derived for the young SP component of these sources. In this scenario the fresh unprocessed metal poorer gas from the destroyed/interacting companion galaxy is driven to the centre of the galaxies and mixed with the central region gas, before star formation takes place. In order to deepen our analysis, we performed the same procedure of SP synthesis using Maraston (2011, M11) EPS models. Our results show that the newer and higher resolution M11 models tend to enhance the old/intermediate age SP contribution over the younger ages.
We study the chemical properties of the stellar populations in eight simulations of the formation of Milky-Way mass galaxies in a LCDM Universe. Our simulations include metal-dependent cooling and an explicitly multiphase treatment of the effects on the gas of cooling, enrichment and supernova feedback. We search for correlations between formation history and chemical abundance patterns. Differing contributions to spheroids and discs from in situ star formation and from accreted populations are reflected in differing chemical properties. Discs have younger stellar populations, with most stars forming in situ and with low alpha-enhancement from gas which never participated in a galactic outflow. Up to 15 per cent of disc stars can come from accreted satellites. These tend to be alpha-enhanced, older and to have larger velocity dispersions than the in situ population. Inner spheroids have old, metal-rich and alpha-enhanced stars which formed primarily in situ, more than 40 per cent from material recycled through earlier galactic winds. Few accreted stars are found in the inner spheroid unless a major merger occurred recently. Such stars are older, more metal-poor and more alpha-enhanced than the in situ population. Stellar haloes tend to have low metallicity and high alpha-enhancement. The outer haloes are made primarily of accreted stars. Their mean metallicity and alpha-enhancement reflect the masses of the disrupted satellites where they formed: more massive satellites typically have higher [Fe/H] and lower [alpha/Fe]. Surviving satellites have distinctive chemical patterns which reflect their extended, bursty star formation histories. These produce lower alpha-enhancement at given metallicity than in the main galaxy, in agreement with observed trends in the Milky Way.