No Arabic abstract
We perform a fossil record analysis for ~800 low-redshift spiral galaxies, using STARLIGHT applied to integral field spectroscopic observations from the SDSS-IV MaNGA survey to obtain fully spatially-resolved high-resolution star formation histories (SFHs). From the SFHs, we are able to build maps indicating the present-day distribution of stellar populations of different ages in each galaxy. We find small negative mean age gradients in most spiral galaxies, especially at high stellar mass, which reflects the formation times of stellar populations at different galactocentric radii. We show that the youngest (<10^{8.5} years) populations exhibit significantly more extended distributions than the oldest (>10^{9.5} years), again with a strong dependence on stellar mass. By interpreting the radial profiles of time slices as indicative of the size of the galaxy at the time those populations had formed, we are able to trace the simultaneous growth in mass and size of the spiral galaxies over the last 10 Gyr. Despite finding that the evolution of the measured light-weighted radius is consistent with inside-out growth in the majority of spiral galaxies, the evolution of an equivalent mass-weighted radius has changed little over the same time period. Since radial migration effects are likely to be small, we conclude that the growth of disks in spiral galaxies has occurred predominantly through an inside-out mode (with the effect greatest in high-mass galaxies), but this has not had anywhere near as much impact on the distribution of mass within spiral galaxies.
Based on MaNGA integral field unit (IFU) spectroscopy we search 60 AGN candidates, which have stellar masses $M_{star}leqslant5times10^{9}$$M_{odot}$ and show AGN ionization signatures in the BPT diagram. For these AGN candidates, we derive the spatially resolved stellar population with the stellar population synthesis code STARLIGHT and measure the gradients of the mean stellar age and metallicity. We find that the gradients of mean stellar age (metallicity) of individual AGN-host dwarfs are diverse in 0-0.5 Re, 0.5-1 Re and 0-1 Re. However, the overall behavior of the mean stellar age (metallicity) profiles tend to be flat, as the median values of the gradients are close to zero. We further study the overall behavior of the mean stellar age (metallicity) by plotting the co-added radial profiles for the AGN sample and compare with a control sample with similar stellar mass. We find that the median values of light-weighted mean stellar ages of AGN sample are as old as 2-3 ~Gyr within 2 Re,which are about 4-7 times older than those of the control sample. Meanwhile, most of the AGN candidates are low-level AGNs, as only eight sources have L[OIII]>$10^{39.5}$~erg~s$^{-1}$. Hence, the AGNs in dwarf galaxies might accelerate the evolution of galaxies by accelerating the consumption of the gas, resulting in an overall quenching of the dwarf galaxies, and the AGNs also become weak due to the lack of gas. The median values of mass-weighted mean stellar age of both samples within 2 $Re$ are similar and as old as about 10~Gyr, indicating that the stellar mass is mainly contributed by old stellar populations.The gradients of co-added mean stellar metallicity for both samples tend to be negative but close to zero, and the similar mean stellar metallicity profiles for both samples indicate that the chemical evolution of the host galaxy is not strongly influenced by the AGN.
Dust attenuation in star-forming spiral galaxies affects stars and gas in different ways due to local variations in dust geometry. We present spatially resolved measurements of dust attenuation for a sample of 232 such star-forming spiral galaxies, derived from spectra acquired by the SDSS-IV MaNGA survey. The dust attenuation affecting the stellar populations of these galaxies (obtained using full spectrum stellar population fitting methods) is compared with the dust attenuation in the gas (derived from the Balmer decrement). Both of these attenuation measures increase for local regions of galaxies with higher star formation rates; the dust attenuation affecting the stellar populations increases more so than the dust attenuation in the gas, causing the ratio of the dust attenuation affecting the stellar populations to the dust attenuation in the gas to decrease for local regions of galaxies with higher star formation rate densities. No systematic difference is discernible in any of these dust attenuation quantities between the spiral arm and inter-arm regions of the galaxies. While both the dust attenuation in the gas and the dust attenuation affecting the stellar populations decrease with galactocentric radius, the ratio of the two quantities does not vary with radius. This ratio does, however, decrease systematically as the stellar mass of the galaxy increases. Analysis of the radial profiles of the two dust attenuation measures suggests that there is a disproportionately high concentration of birth clouds (incorporating gas, young stars and clumpy dust) nearer to the centres of star-forming spiral galaxies.
We investigate the 3D spin alignment of galaxies with respect to the large-scale filaments using the MaNGA survey. The cosmic web is reconstructed from the Sloan Digital Sky Survey using Disperse and the 3D spins of MaNGA galaxies are estimated using the thin disk approximation with integral field spectroscopy kinematics. Late-type spiral galaxies are found to have their spins parallel to the closest filaments axis. The alignment signal is found to be dominated by low-mass spirals. Spins of S0-type galaxies tend to be oriented preferentially in perpendicular direction with respect to the filaments axis. This orthogonal orientation is found to be dominated by S0s that show a notable misalignment between their kinematic components of stellar and ionised gas velocity fields and/or by low mass S0s with lower rotation support compared to their high mass counterparts. Qualitatively similar results are obtained when splitting galaxies based on the degree of ordered stellar rotation, such that galaxies with high spin magnitude have their spin aligned, and those with low spin magnitude in perpendicular direction to the filaments. In the context of conditional tidal torque theory, these findings suggest that galaxies spins retain memory of their larger-scale environment. In agreement with measurements from hydrodynamical cosmological simulations, the measured signal at low redshift is weak, yet statistically significant. The dependence of the spin-filament orientation of galaxies on their stellar mass, morphology and kinematics highlights the importance of sample selection to detect the signal.
Bars in galaxies are thought to stimulate both inflow of material and radial mixing along them. Observational evidence for this mixing has been inconclusive so far however, limiting the evaluation of the impact of bars on galaxy evolution. We now use results from the MaNGA integral field spectroscopic survey to characterise radial stellar age and metallicity gradients along the bar and outside the bar in 128 strongly barred galaxies. We find that age and metallicity gradients are flatter in the barred regions of almost all barred galaxies when compared to corresponding disk regions at the same radii. Our results re-emphasize the key fact that by azimuthally averaging integral field spectroscopic data one loses important information from non-axisymmetric galaxy components such as bars and spiral arms. We interpret our results as observational evidence that bars are radially mixing material in galaxies of all stellar masses, and for all bar morphologies and evolutionary stages.
By means of the fossil record method implemented through Pipe3D, we reconstruct the global and radial stellar mass growth histories (MGHs) of an unprecedentedly large sample of galaxies, ranging from dwarf to giant objects, from the Mapping Nearby Galaxies at the Apache Point Observatory survey. We confirm that the main driver of the global MGHs is mass, with more massive galaxies assembling their masses earlier (downsizing), though for a given mass, the global MGHs segregate by color, specific star formation rate (sSFR), and morphological type. From the inferred radial mean MGHs, we find that at the late evolutionary stages (or for fractions of assembled mass larger than ~ 80%), the innermost regions formed stars on average earlier than the outermost ones (inside-out). At earlier epochs, when the age resolution of the method becomes poor, the mass assembly seems to be spatially homogeneous or even in the outside-in mode, specially for the red/quiescent/early-type galaxies. The innermost MGHs are in general more regular (less scatter around the mean) than the outermost ones. For dwarf and low-mass galaxies, we do not find evidence of an outside-in formation mode; instead their radial MGHs are very diverse most of the time, with periods of outside- in and inside-out modes (or strong radial migration), suggesting this an episodic SF history. Blue/star-forming/late-type galaxies present on average a significantly more pronounced inside-out formation mode than red/quiescent/early-type galaxies, independently of mass. We discuss our results in the light of the processes of galaxy formation, quenching, and radial migration. We discuss also on the uncertainties and biases of the fossil record method and how they could affect our results.