Do you want to publish a course? Click here

Suitable sets for strongly topological gyrogroups

57   0   0.0 ( 0 )
 Added by Fucai Lin
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

A discrete subset $S$ of a topological gyrogroup $G$ with the identity $0$ is said to be a {it suitable set} for $G$ if it generates a dense subgyrogroup of $G$ and $Scup {0}$ is closed in $G$. In this paper, it was proved that each countable Hausdorff topological gyrogroup has a suitable set; moreover, it is shown that each separable metrizable strongly topological gyrogroup has a suitable set.



rate research

Read More

66 - Meng Bao , Fucai Lin 2019
Topological gyrogroups, with a weaker algebraic structure than groups, have been investigated recently. In this paper, we prove that every feathered strongly topological gyrogroup is paracompact, which implies that every feathered strongly topological gyrogroup is a $D$-space and gives partial answers to two questions posed by A.V.Arhangel skivi ~(2010) in cite{AA1}. Moreover, we prove that every locally compact $NSS$-gyrogroup is first-countable. Finally, we prove that each Lindel{o}f $P$-gyrogroup is Ra$check{imath}$kov complete.
107 - Yingying Jin , Li-Hong Xie 2021
The concept of gyrogroups is a generalization of groups which do not explicitly have associativity. Recently, Atiponrat extended the idea of topological (paratopological) groups to topological (paratopological) gyrogroups. In this paper, we prove that every regular (Hausdorff) locally gyroscopic invariant paratopological gyrogroup $G$ is completely regular (function Hausdorff). These results improve theorems of Banakh and Ravsky for paratopological groups. Also, we extend the Pontrjagin conditions of (para)topological groups to (para)topological gyrogroups.
149 - Meng Bao , Fucai Lin 2020
Topological gyrogroups, with a weaker algebraic structure without associative law, have been investigated recently. We prove that each $T_{0}$-strongly topological gyrogroup is completely regular. We also prove that every $T_{0}$-strongly topological gyrogroup with a countable pseudocharacter is submetrizable. Finally, we prove that the left coset space $G/H$ is submetrizable if $H$ is an admissible $L$-subgyrogroup of a $T_{0}$-strongly topological gyrogroup $G$.
100 - Meng Bao , Xiaoyuan Zhang , 2020
Separability is one of the most basic and important topological properties. In this paper, the separability in (strongly) topological gyrogroups is studied. It is proved that every first-countable left {omega}-narrow strongly topological gyrogroup is separable. Furthermore, it is shown that if a feathered strongly topological gyrogroup G is isomorphic to a subgyrogroup of a separable strongly topological gyrogroup, then G is separable. Therefore, if a metrizable strongly topological gyrogroup G is isomorphic to a subgyrogroup of a separable strongly topological gyrogroup, then G is separable, and if a locally compact strongly topological gyrogroup G is isomorphic to a subgyrogroup of a separable strongly topological gyrogroup, then G is separable.
125 - Meng Bao , Fucai Lin 2020
A space $X$ is submaximal if any dense subset of $X$ is open. In this paper, we prove that every submaximal topological gyrogroup of non-measurable cardinality is strongly $sigma$-discrete. Moreover, we prove that every submaximal strongly topological gyrogroup of non-measurable cardinality is hereditarily paracompact.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا